
PACKET SWITCH SOFTWARE DESIGN CONSIDERATIONS

Terry Fox, WB4JFI
President, AMRAD
1819 Anderson Rd.

Falls Church, VA 22043

Abstract

Toward the end of 1985, a new device showed
up on Amateur Packet Radio, the packet switch.
Soon, the packet switch will be replacing
di ipeaters

f
around the country, giving more

re iable (if slower) operation of the overall
network. The first switches have been based on
T$LttTeNdC-2 hardware, and therefore are somewhat. . An accompanying paper describes what
t
B
pes oi hardware the author sees bein

t e future (both near and down the road P
;;,edtiE

switches. This paper will ex lain the author's
view of how the switch so twareP should be
organized.

This paper will not provide actual switch
code, but rather indicate where pro ress is being
made, and where help is needed. A5 so, wherever
possible, I cite Protocols and Standards I believe
should be implemented.

Types Of Packet Switches- -
Before we delve into the meat of the software ,

inside the switch, we must decide what the
switch's function(s) are. I see these functions
falling into two catagories, with one having two
sub-catagories; the transit switch, and the end-
point switch.

The first type is called the transit switch
because it is used to pass network connections
through it, but not necessarily act as an end-
point of a network connection, except for
maintenance functions. The transit switch can be
thought of as a software "patch-panel" type of
device. This means that packets coming in from
one adjacent switch station will pass through the
transit switch to another adjacent switch. The
length of time the "patch cord" is plugged in,
allowing the connection, depends on the type of
networkin
a very fl

protocols being used. It can vary from
s ort period (the single packet) in a

dynamic-routing datagram network, to almost
forever in a permanent virtual circuit case.
Normally, the patch is maintained for the length
of the end-to-end Network connection in virtual
circuit networks. The transit switch may also

P
erform a similar function as today's remote
ocation digipeaters, that of interconnecting

local networks to form a larger network.

Transit switches may have special hardware
needs, since they will most likely be placed at
remote locations far away from network users.
Among these hardware needs will be low-PO;;;
operation and redundancy of key parts
survivability. Additional software may be
required to take advantage of this hardware.

The other type of packet switch is the end-
point switch. While it may also perform the
transit switch duties mentioned above, it will
also have software that allows the end-users of
connections to interface to it. This is where a
t pica1 Amateur station will put his packets “into
tKe pipe’:) and also where the packets come “out of
the pipe at the other end. In our patch panel
scenario mentioned above, the end- oint switch is
analagous to the last patch paneFL that has the
equipment connected to it. In order to perserve
the capability of using older packet systems that
may be capable of only level 2 connections, there
are potential1

K
two different types of network

interfaces in t e end-point packet switch.

If the end-user is an Amateur that has a
newer packet board (called a PAD) with true

networking code in it, Amateur A can ask for a
i$wE;k Layer connection from theswitch. The. understanding that a PAD is
connection,

requestin
will automatically provide the initia K

link and network connections, and proceed to
attempt to place the requested call to the
destination station.

If, however, the end-user is an Amateur using
a TAPR TNC-1 with level 2 (link) only software,
there must be some additional method of
a network interface for the user.

roviding
Typica ly,r this

will be through an additional program, which I
will call the network access PAD routine. This
network access PAD routine will run as an
application layer program inside the end-point
switch, and will provide all the necessary network
interface magic for the Link-only Amateur.

Let me now describe how I think the switch
software might be organized.

Top-Down Design of Switch Software- -

One reason for this paper is to indicate how
we in AMRAD are working on the switch software.
Up to now, most packet systems have been designed
by first puttin
writing low-leve H

together some hardware, then
drivers for that hardware, then

writing higher level
low level drivers, etc.

code to properly tweak the
While this building-block

approach does indeed work, it can lead to problems
if some unanticipated problems occur. It also
tends to be difficult for more than one person to
work on a project using this approach. AMRAD has
started working on the packet switch using more of
a top-down design approach. While what we are
doing ma
that phiP

not be exactly top-down, it does follow
osophy.

We are studying the various aspects of,;!;
switch BEFORE writing a line of code. .
includes how the various processes inside the
switch interoperate, and how to make the best use
of the hardware supplied.

As part of this study, we quickly came to the
conclusion that in order for the different
software “math ine s” of the switch to work together
properly, some sort of operating system should be
implemented. This operating system need not be as
complicated as a disk operating system, but should
provide the necessary tools for the different
processes to intercommunicate. It should also
provide a common set of utilities for access to
shared switch resources

L
such as the memory or

buffer pool, and timer su routines. I will pursue
the operating system in more detail shortly.

We decided to follow the IS0 Open S stems
Interconnection Reference Model (OSI-RM 7 when
s

Fl
litting up the task of designing our switch.

T is gave us some rather clear divisions of
responsibility, both for dividing our labor pool
for the desi n work,

f
and for what software is

responsible or accomplishing which sub-task of
the overall switch.

I feel that most sub-tasks should havae;w;
distinct parts; the operational code,
management section that errors are reported to and
new requests of that sub-task are coordinated
through. This will lead to more orderly code at
each sub-task, and also provide a better form of
sub-task intercommunications.

5.78

Some of the sub-tasks of a typical Amateur
packet switch are as follows:

A.

B.
c.
D.
E.

F.

G.
H.

I.

J.
K.
L.

Operating System (including resource
management).
Maintenance Application of switch.
Message Authentication for maintenance.
Database management (User and Routing).
Network Access PAD Application
(if available).
Session La er Protocol for internal
switch appY ications.
Transport Layer Protocol Machine.
Network La
(if needed4;

er Gateway Machine
.

Network Layer Addressing and
Routin
Networa

routines.

Link La
Layer Protocol Machine.
er Protocol Machine.

PhysicaEI Layer Software Support.

Each of these sub-tasks will now be discussed
individually.

Operating System

A typical packet switch will need to perform
several different processes, seemingly at once.
One method of accomplishing this would be to;;;lE
separate microprocessor for each sub-task. l

this might make the writing of software easier, it
is generally considered a waste of processing
power, costs muchmore, and takes more room and
power. Until this method of dividing the overall
switch task becomes necessary (due to single
processor overload), another method can be used
more effectively. Someday, as RF channel speeds
go up and as more RF channels are used per switch,
the use of multi-processors will become necessary.

One microprocessor should be able to perform
all the necessary functions of today's packet
switch if some method of dividing up it's
processing time is devised. This division of time
can be done in many ways. One of the most common
methods is to have the hardware provide a timed
interrupt, which the processor uses to indicate
it's time to switch tasks. This wa each task is
allowed a certain time slice to per PArm as much of
its duties as possible. Another method of
dividing the processor time is to let each task
run to completion before switching to another
task. There are also various combinations of
these two task switching methods. The method of
switching, along with the necessary support
required to make this task switching transparent
to the tasks is one responsibility of an operating
system.

Almost all processes in the packet switch
will need to communicate with at least two other
processes, both to pass information and to request
services from the other process. The traditional
method to do this is to call a subroutine (or
function), passing a pointer to the informatio;a;;
be tranferred, or the service request.
process may be written at a different time, or by
a different person. This sometimes leads to
different interprocess interfaces, making the
overall system design more complicated. A
standard, predefined set of routines to provide
information passing and service requests would aid
in the designing of the switch. This is another
service that is often provided by an operating
system.

Still another service that would be
frequently requested would be a common set of
subroutines to provide memory and buffer
management. The packet switch is basically a
message transfer machine, with the messages being
the packets. These messages are usual&
maintained inside the switch in buffers.
requesting for, and the freeing of buffers, along
with the passin
within the buf B

of buffers and accessing of data
ers, can easily be standardized

into a common set of subroutines. This set of
subroutines lumped together is called buffer
management. Buffers are made from computer
memory, and this memory is usually controlled by
another set of subroutines, called memory
management.
routines

Since buffer and memory managemae;;
are services used by almost

processes, they are normally considered part of
the operating system.

The packet switch has several processes that
rely on the use of timers for error detection and
recovery. In more advanced systems, such as the
packet switch, software timing loops are not
considered good form,
processor time,

since they occupy too much
essentially putting to sleep all

other processes just to keep time. The suggested
alternative is to use hardware timers with
software sup ort
are requestea

for those timers. Since timers
by various processes, it makes sense

to provide timer access as an additional service
by the operating system.

Noting that the use of an operating system
that provided the above support would be
beneficial both to those of us writing the switch
code now and to those writing additional code for
the switch or modifying our switch code, we
started looking at available operating systems.
Our prerequisites included that the operating
system be either free or inexpensive, preferrably
written in a higher level language for software
portability,
jobs.

and be efficient at its appointed

Our present packet switch hardware is based
on Intel microprocessors (the 8080 and 8088
families), at first it looked like iRMX from Intel
might be a good start.
support

It had all the necessary
capability mentioned above,

lot more.
along with a

Upon careful analysis however, it began
to look like iRMX would take too long to perform
most of the requested tasks.

About the same time we decided iRMX wouldn't
fill the bill, Mike O'Dell started talking up a
different type of operating system, called the
HUB. It was desi ned

K
to be more efficient in

message based a
type devices. 1

p ications,
T

especially in packet

sounded.
e more he talked, the better it

HUB does not have a lot of fancy stuff,
such as processes interrupting other processes,
but for our application we don't need that fancy
stuff, which nine times out of ten gets in the way
and takes valuable processing time. Mike was so
convinced that the HUB was the right way to go
that he wrote the code for us in C. I have been
able to compile his C code on an IBM-PC and on a
Xerox 820. We are going to use the HUB operating
system as the basis for our packet switch, as soon
as we get a more thorough understanding of it.
Mike has written an introductory paper on the HUB
which is elsewhere in these proceedings. I feel
this HUB will become a very important part of our
packet switches, since it provides a stable,
working interface for the rest of the tasks to
use.

Eventually, the operating system should
probably be written in assembler, since it will be
the most commonly used software in the switch.

Maintenance Application Task in the Switch-m--

Now that we have an o erating system running
in the switch, there must g e some tasks that the
switch needs to perform. One task might be the
maintenance of the switch itself. This task could
be divided into two sub-tasks; minor "tweaking" of
variables for more efficient switch operation, and
recovery after some type of malfunction. While
the various protocols might be capable of doin
minor tweaking of their own variables, both o H
these sub-tasks should be available to an Amateur
remote from the switch. This means an Amateur
could establish a connection
indicate the purpose

to the switch,
is to perform remote

maintenance of the switch,
authorization door, and

pass through some
then perform the

maintenance of the switch, as long as the switch
is operating.

Among the maintenance functions that should
be available are:

A.
B.
c.

D.
E.
F.
G.

H.
I.
J.

Take the switch completely off the air.
Re-boot the switch from mass-storage.
Upload new switch code or portion of
switch code over the packet channel.
List operatin
List status 0f

parameters of the tasks.
connections to switch.

List stations and switches heard lately.
Gain access to User and Routing
databases for listing or updating.
Modify operating parameters of switch.
Monitor and report switch operation.
Dump error reports since last
maintenance connection.

5.79

If a switch starts malfunctioning, there
should be a wa

Y
to gain access to it, assuming it

has not total y failed.
connected to the switch

Each Physical channel
should be allowed to have

a connection established through it to gain access
to the Maintenance Application program. This way,
if one Physical channel is tied up or broken, it
could be turned off without removing the whole
switch from the network. If however, the switch
has some major flaw that prevents proper lon
operation it may be better to totally disab ef

-term
the

whole switch until on-site repairs can be
performed.

There also needs to be a method of either
uploading new switch code, or updating a database
from a remote location. The best way to do this
is to store the uploaded information on a mass-
stora e

%
device, then re-boot the switch after the

uploa has been successfully completed. Modifyin
portions of the switch code "on-the-fly" coul %
prove disasterous, and should be avoided.

Another maintenance function would be to
monitor switch o
real-time (estabP

eration. This can be done in
ish a maintenance connection,

then let the Maintenance Application
periodically dump status information7

rogram
or by

accumulating the status information in variables
or a database for later retrieval.

The maintenance process described above
assumes there is not a separate Service Processor
connected to the switch, or the Service Processor
is not available for some reason. If there is a
Service Processor available, most maintenance
functions will probabl
in addition to others tfI

be performed through it,
at the actual switch could

not perform and still operate normally.

Remote maintenance of switches will be a
necessary function that will be improved upon as a
history of switch operation is documented. There
is no way we can predetermine all the maintenance
requirements before some actual operating time is
lo ed.

fH
This fine-tuning of switch maintenance

wi be especially important for remotely placed
switches, where access may be difficult or
impossible for long periods of time.

Since the maintenance application does not
have any major speed constraints, it could be
written in a higher level language such as C for
portability.

The Maintenance Application process will
receive its data from one of two sources; a local
console if the maintenance is being dons on-site,
or from the Message Authentication process if the
maintenance requests are coming over a packet
channel. The Maintenance Application process
should be able request status of each switch
process, and control certain as ects of each
switch process. The access to eatR process will
normally be through a management routine within
that process.

Message Authentication for Maintenance

Since the maintenance application involves
direct control of the packet switch internals,
some method of allowing certain Amateurs access
while preventing other Amateurs access must be
employed. Access control schemes such as simple
passwords or control codes are not adequate, since
any Amateur listening to the packet channel can

%
ain knowledge of them.
igital

Sin,cee,
communications K

ydket radio iso;
way

dynamically digitally encoding both fhe access
request and the actual commands sent to the switch
can be easily accomplished. Paul Newland

8
resented a pa er
etworking Con erence describing such a SCP

at the 1985 ARRL Corn uter
Reme.

Coincidentally, Hal Feinstein came u
similar scheme at about the same t P

withHzlv;;z
me.

been working on this over the last year, and has
written a paper on his activities, found elsewhere
in these proceedings. He is also writing the code
to perform the message authentication he
describes.

The Message Authentication process does not
require real fast execution time, SO it could be
written in a higher level language, such as C, for
portability between different types of switches.

The Message Authentication process interfaces
between the Maintenance Application process, and
the Session Layer Protocol machine, or the
Transport Layer Protocol machine if there is no
Session Layer.

Database Management

Packet switches will need to know where to---- -_
route the packets they receive. This routing will
be based on information the switch maintains on
how the network is organized. Since this
information should be quickly accessable, an
orderly method of storing it should be used.
Also, routing information will change
periodical1 due to switches oing up and down.
In order to K2ep the routing Hin ormation accurate,
a small database manager should be used.

Another function a database manager could
provide for end-point switches is to keep a $JI&
of Amateur stations it normally services.
way, when a request for one of its users comes in
it will recognize that it should res ond, or it
the user has indicated that all ca 1sP for it--- --
should be forwarded to another switch, the switch
can pass the new destination end-point switch
address back to the source end-point switch.

This database manager does not need to be as
so histicated as a commercial program. A
re atively small database program can supportP
these two databases, along with any other
databases that might be used by the switch (such
as maintenance records). The database program
could be written in a higher level language, such
as C with no ill effects.

Network Access PAD Application-e

need
As mentioned earlier, end-point switches will
to provide two different network access

methods to the Amateur. If the Amateur has
Network Layer ca ability

P
it can re uest

connections direct y through the switch. 4f the
Amateur only has Link Layer connection capabilit
(such as most present TNC boards have), the switch
will have to perform some additional functions for
the Amateur.

One method of providing this service would be
whenever a Level 2 only TNC requests connection to
the switch (note the connection is TO the switch,
not thru it as a digipeater is presently used),
the switch would accept the Link Layer connection.
This Link only connection indicates that the user
cannot support network protocols, and the switch
then places a request to the Network Access PAD
code for assistance. The Network Access PAD
routine might then send the user a menu of
functions that the net access PAD code can
provide,

1.
2.
3.

2..

6 .

such as:

Connect to another Local Amateur.
List All Local Amateurs on this Switch.
Look up a Remote Amateur's Address.
Calculate path to Renote Amateur.
Connect to Remote Amateur via supplied
path.
Connect to Remote Amateur via path
im
a
lied by supplying Destination Switch

Ad ress.
7.

8 .

9 .

10.

Connect to Remote Switch to Monitor it's
the remote channel.
Add this Amateur station to SwitchUser
directory.

The

Delete this Amateur station from Switch
User directory.
Indicate an alternate

P
ath for this

Amateur station (station w 11 be mobile).

above list is-not meant to be a final
version of a menu, but does indicate some of the
functions the network access PAD routine should
provide.

The user then selects the function or
functions to be performed, and the switch takes
care of doing the actual work. If for example,
the user requests a network connection to another
Amateur on the same switch with Network Layer
capability. The switch will then request a
network connection to the destination Amateur on
behalf of the first Amateur. If the network
connection is successful, the switch will handle
the Network Layer protocol machine for the

5m80

Amateur, using the Link Layer connection to

P
rovide data integrity between itself and the
irst Amateur.

One
work wil P

oint here is that a lot of additional
be done inside the switch to provide

this service to Link-only Amateurs. If two Link-
only Amateurs wish to communicate
switch,

through a
it may be better if they connect direct1

to each other, using the packet switch in Level s
digipeater mode. Digipeating is generally not a
good idea once true networkin
some cases it may be the most ef

arrives, but in
ficient method of

communicating. A link using only one digipeater
should be stable enough to provide reliable
communications,
digipeatin

and the loss of&efficiency due to

of overheaf
may be made up by the reduced amount
the Network Layer would otherwise add.

One type of Network Access PAD interface will
be based on the CCITT X.28/X.29/X.3 set of
standards, commonly referred to as the triplex
protocols. X.28 defines the user-to-network PAD
interface, X.29 defines the network-to-PAD
interface, and X.3 defines the variables used in
the PAD, along with some common settings of these
variables.

Dave Borden has written a paper on the User
interface which can be found elsewhere in these
proceedings. The user interface is another task
that can be written in a higher level language
such as C.

Session Layer Protocol for Internal Switch
UEEEEns - - - em-

The Session Layer is used to multiplex more
than one data stream to the upper layers over a
single transport/network connection. This may be
necessary in the switch for maintenance and for
Link Layer only connections. An example of the
latter would be if a Link Only TNC requests more
than one network connection, or if the TNC
requests both a network connection and some other
Network Access PAD function simultaneously.

I am leanin
f
toward the use of a sub-set of

the CCITT X.22 Session Layer protocol for
starters.
use by

This protocol is more than adequate for
the packet switch. The use of a hi her

level language for the Session Layer ProtocoFi in
the switch would not pose any major problems.

Transport Layer Protocol Machine

The Transport Layer is responsible for
absolute data integrity across the network
connections. While the Network Layer makes the
individual connections between switches, the
Transport Layer provides a logical connection
between the two end-points (source and
destination). Different Network Layer Protocols
place different requirements on the Transport
Layer Protocol.

A network made up of data ram
will need a more complicate cf

type switches

Protocol machine,
Transport Layer

partially because datagram
switches do not maintain a "connection" between
each other, and therefore do not have ANY error
recovery (that's recovery, not detection)
procedures operating between themselves. Also,
the only real recourse a
detecting an error

datagram switch has when
is to throw the offending

packet in the garbage queue and hope it is
retransmitted.

A network based on virtual-circuit type
switches will need little, if any, Trans
Protocol machine. Since individua Y

ort Layer
logical

connections are maintained between switches
involved in a network connection, these individual
lo ical connections will detect and correct almost
alf errors incurred along the network connection.
The only two error conditions that the individual
logical connections between switches won't ALWAYS
correct for proper1 is a total transit switch
failure somewhere a Pong the network connection,
and data corruption inside a switch, most likely
due to partial memory failures.

For the above stated reasons, end-point
switches may want to employ some form of a
Transport Layer Protocol machine on connections
where absolute data integrity is necessary. At
the 1985 ARRL Computer Network, I proposed the

Amateur community adopt the use of the CCITT X.224
Transport Protocol network-wide, both for virtual
circuit networks (AX.25 types) and datagram
networks (the TCP/IP crowd). This Trans

P
ort

actually defines five different c
Layer

asses of
Transport Layer Protocols, with negotiation of
classes allowed at the Transport Layer connection
establishment. The various classes provide
different forms of end- oint error detection and
correction. Intereste B readers should refer to
the 1985 ARRL Computer Networking Conference
proceedings.

The important part of the X.224 Transport
Layer Protocol is that with the various classes
defined, a switch can request only the amount of
overhead necessary, without having to live with a
lot of excess baggage. The datagram-based network
will need to use the Class 4 rotocol, which has
all the bells and whistles. P f a Transport Layer
Protocol machine is deemed necessary in a virtual
circuit network, Class 1 should be sufficient,
especially if the checksum option is implemented.

The X.224 Class 1 machine does very little,
as far as Transport Protocols go.
establishing an end-point

It starts by
logical connection

between the two end-pont devices (normal1
end-point switches).

the two
It then relies on tKe use of

state variables and timers to detect and recover
from errors, just like Link and virtual circuit
Network Layer protocols. The difference is these
state variables are maintained end-to-end ONLY,
they are not affected by individual Link or
Network Layer connections. If an intermediate
switch in a network connection fails, the
Transport Layer Protocol machine will eventually
detect it, due to timer failures. The Transport
Layer Protocol machine will then attempt to re-
establish the network connection from the source
end-point to the destination end-point, without
any User Amateur intervention, unless requested.
Lost and duplicates packets will be detected by
their wrong se uence numbers.

B
This corrects for

all but one pro
switch.

lem, data being mangled inside a

The CCITT X.224 Transport Protocol has an
option to append a checksum to all data packets.
Using this option, data integrity can be assured.
Since the Transport machine is end-to-end, the
checksum is also end-to-end. This means the
checksum needs to be calculated on1

t:
at the two

ends, not at every intermediate switc .

The Amateurs at each end of the network
connection may not have the X.224 Transport
Protocol in their PADS for a while, so the switch
will have to provide the Transport Protocol
machine. This is the way most commercial virtual
circuit networks operate. The end user accesses
the network via an X.25 connection. The network
then attempts to make the requested network
connection using a Transport La er
end-to-end data integrity, and K.75

protocol for
or a similar

Network Layer Protocol.
same as X.25

X.75 is basically the
exce t

mode, while X.2 P
it operates in a "balanced"

is more of a master/slave
protocol. The X.25 user-to-end- oint-switch
connection maintains proper data f7 ow from the
user to the network, the X.75 connections maintain
proper data flow between the switches involved in
the network connection, and the Transport Layer
connection makes sure that the data traversed the
whole network connection properly.

Keep in mind that a network of X.25/X.75
Network Layer connections may be reliable enough
for most communications, allowing the Trans ort
Layer machine to be developed and refined w ileFl
the Network Layer is "on-the-air". This will
allow a study of exactly how much of a Transport
Layer Protocol needs to be used to back-up the
Network Layer connections.

Another requirement that may be imposed on
the Transport Layer machine would be that of
"gatewa ing"

P
between different Transport La er

Protoco s. The best way to take care of t K is
potential problem would be to negotiate to the
proper class of Transport Protocol to be used from
the outset of a network connection. If a
Transport Protocol is implemented that does not
allow this negotiation (such as TCP), there may
need to be a Transport La er gateway at the
interface switch between t K
Transport Protocols.

e two incompatible
Technically, this violates

5.81

the IS0 Reference Model, since the Transport Layer
Protocol each end-point sees is not the same and
therefore the information at each end-point may
not be valid across the entire network connection.
Still, if the Transport Layer gateway is written
carefully this can be a viable alternative.

The Transport Layer Protocol maching should
be written in a higher level langua
since it may need to be ported to di H

e such as C
ferent types

of microprocessors.

Network Layer Gateway machine

Just as there may be a need for a Transport
Layer gateway, there may also be a need for a
Network Layer gateway. This process would be able
to transform packets from one Network Layer
protocol to that of a different type, making each
side of the gateway appear to be working with a
device of the same type
Layer gateway will most P

rotocol. This Network
ikely be easier to write

than the Transport Layer gateway, since the change
would not necessarily have end-to-end
repercussions. This task is made even easier if
the Transport Protocol has been negotiated to an
agreed upon class, eliminating the need for
Transport gateways.

The Network Layer gateway machine could be
written in a higher level language for
portability.

Network Layer Addressing and Routing Issues

There has been a lot of lively discussion
over the last

K
ear

Protocols of c
regarding the Network Layer

oice. In addition to that basic
discussion there are two otheierbeapeted subjects
that invoke an equally live1 Those two
subjects are what network ad ressing 'scheme is toCT
be used, and how routing information is to be
stored and how routes are to be determined.

When I first suggested the use of the Amateur
callsigns as the addresses for the Link Layer of
AX.25, it seemed like a natural. The best part of
using the callsign is that they have been pre-
assigned by the FCC., totally eliminating the need
for some organization to assign addresses, which
was the case for the older SDLC protocols used. I
believe this is still the case, even for the
up er-layer
ca P

protocols. However, the Amateur
lsi n alone may not present enough information

to "he p"f a network connection along.

Several additional addressing schemes have
been devised by the Amateur community over the
last year. Fortunately, most of these do not
require an organization or groups of organizations
to assign network addresses. Some of the more
common addressing schemes are:

A. Callsign Only.
B. Callsign Plus Area Code/Phone Number.
c. Callsign Plus Airport Designators.
D. Callsign Plus Zip-Codes (Zip Plus 4?).
E. Callsign Plus Latitude and Longitude.
F. Callsign Plus Gridsquares.
G. Assigned Numbers by a heiarchical

group of organizations.

Some of the people in the commercial network
world warn against using addressing schemes that
include or imply routing information. I feel that
while we are building the Amateur Packet Network,
and until our switches are sophisticated enough to
contain all the routing information necessary to
route packets without any other help, we may need
some routing information included in the network
addresses. This is why I suggested the use of
callsigns plus gridsquares in my AX.25 Level Three

F
roposal in the Third ARRL Computer Networking
roceedings. The su gested method there was to

put the Amateur calK si ns
a

in the normal AX.25
address fields, and add t e gridsquare information
as 0

r
tional facilities. This way, the callsigns

wil always be there, but the additional
gridsquare information can be dropped when it is
no longer needed.

Meanwhile, the first actual implementation of
AX.25 Level Three has recently come out, and it
sup orts

i
callsigns plus area codes and phone

num ers. Both of these systems do implicitly
carry routing information, since they both carry a
recognizable method of identifying where the

destination station is physically located. It is
beyond this paper to indicate which is better,
however both are addressed in additional papers
presented elsewhere in these proceedings.

The point I want to emphasize is that one
reason why AX.25 Level 2 has been so successful is
that the addressing issue was resolved without
creating a bureaucrat

B
to maintain records of who

was assigned what ad ress. I feel this is equally
important at the Network Layer.

The routing issue is another area of great
debate. Not only is the actual route
determination an issue, but how the routing
information is stored is also an issue.

Eric Scace, K3NA has been working on a
routing algorithm that is self-generating.
Whenever a packet switch comes on the air, it
notifies other packet switches it hears that it is
now available. All packet switches it notifies
then add it to their routing database, modifyin
any routes that can now be run through it. Alf
the switches involved then pass the new routes
they have come up with to each other. The last
step is to erase
database.

any duplicate routes in the
This process can take a while, and

since the whole routes are kept in the database
it can conceivably grow rather large. A method of
shrinking this database size is to tokenize the
various paths, and then expand the tokens whenever
a route is looked up. The problem with most
methods of shrinking the Routing database is that
the routes must be expanded back whenever they are
accessed, either for look-up or for database
modification. This can add time to the look-up,
which may be a worse situation than the large
table size.

Routing is one subject that will need more
work. For now, we may be better off letting the
User specify the route (explicit routing). As the
Amateur Network grows, a better feel for the
automatic routing algorithms will emerge.

Routin
higher levef

algorithms could be written in a
language,

in virtual circuit
especially ones to be used

switches, since they are
accessed only once (during network connection
setup).

Network Layer Protocol Machine

Since I am one of the prime pushers of
virtual circuits, it should come as no surprise
that AX.25 Level Three is my choice for the
Network Layer Protocol. I feel that since virtual
circuits tend to catch and correct errors when
they occur, less overall network facilities are
wasted correcting these errors.

The Network Layer Protocol machine should be
capable of accepting multiple network connections,
from a variety of other switches. Network
connections that end at the switch should be
;tE;eieon to the proper higher layer protocol.
machine'is

First if a Transport Layer Protocol
invo vedi the data will be passed to

it. If the switch i&elf is the destination end-
point, the data will then be passed to the Session
Layer Protocol machine for further processing. If
the destination station is a Link Layer only TNC,
the data must go to the Network Access PAD program
for Layer 3 processin
the Link Only TNC. I f!

before being transferred to
the destination station has

an AX.25 Network Layer connection to the switch,
the data will be

A&
assed directly to the

destination station P .

The Network Layer Protocol machine could be
written in a hi her

a
level language. The language

of choice for t e switch seems to be C. I see no
time constraints of the Protocol requiring that
the Network machine be written in assembler. The
Link Layer affords enough of a time buffer.

A Network Layer management routine should be
employed as an interface between the network
machine and the rest of the packet switch. This
management routine will monitor the Network Layer
Protocol machine operation, and make minor
adjustments to certain variables. Recoverable
errors may also be reported to the Network Layer
Protocol machine management in order to keep a
record of malfunctions.

5.82

Link Layer Protocol Machine

The Link Layer Protocol machine uses AX.25
Level 2 as the Link protocol, both between the
switch and the individual Amateurs, and between
the switches, runnin
connections. Since ta

under the Network Layer
ere will be many devices

trying to connect to the switch, the Link Layer
Protocol machine must be capable of multiple Link
connections, possibly coming from more than one
Physical channel.

The Link Layer Protocol machine will send its
received data (after it processes it) either to
the Network Layer Protocol machine, or to the
Network Access PAD if the source of the data is a
Link Layer only TNC.

Even though packet activity operates over
half-duplex channels ri
Protocol machine should Pi

ht now, the Link Layer
e

duplex. This will
able to operate full-

code now,
allow easier testing of the

and the addition of full-duplex channels
running at faster speeds, which may be available
in the not-too-distant future.

The Link Layer Protocol machine should have a
separate management section that is capable of
monitoring Link Protocol machine operation. This
management section should be able to report the
status of the Link machine to upper layers, fill
requests from the upper layers for additional
Link connections, and control certain Link
variables to optimize Link Layer operation. In
addition, these same variables should be
adjustable from
routines.

the Maintenance Application

Even though the packet switch will
essential1
a need to K

replace the digipeaters, there may be
eep the digipeater code in the switch.

One case is mentioned above, that of operation
between two Link-only TNC devices. The cost is
nearly nothing (since digipeating is a very simple
function) to keep the function active.

The Link Layer Protocol machine could be
written in a higher level language, such as C, or
it can be written in assembler. I
that since the Link Layer is speeB

ersonally feel
dependent, it

should eventually be written in assembler. This
way processing time in the Link Protocol machine
will not serious1

P
affect

0 eration,
the Link Layer

in the areas of time-outs.
Trl

particular y
is will become especially true as the speed of

the Physical channels increases.

Physical Layer Support Software

The Physical Layer support software is the
packet switches interface to the "real world". It
is what supports the sending and receiving of
packets over the Physical channels. Since this
software directly supports the hardware of a
Physical HDLC channel, I feel it should be written
in assembler for s eed. The software has to be
written specifica 1P

1
for the hardware device

anyway, so the assemb
line.

er requirement is not out of
The end result is that whole frames should

be passed between the Physical Layer support
software and the Link Layer Protocol machine.
These frames should also indicate which channel
they were received on.

While the Physical Layer support software
will need to be tailored to the type of HDLC
channel used,
for debugging,

it should be able to run full-duplex
even for half-duplex RF channels.

The Physical Layer management should be able
to control certain variables such as timeouts and
channel speeds. In addition access to the same
variables should be avai able through thei
Maintenance Application.

Conclusions

AMRAD will be working on the next generation
of packet switch software based lar
ideas presented in this

ely on the

the switch code running P
aper. We p5 an to have
irst on a PC compatible

computer, with smaller versions of the code
running on the Xerox 820 and TAPR NNC systems.
We feel that designing the overall switch software
first, then dividing the project up fo actual
coding may take slightly longer to start, but the
resulting system will more than make up for the
initial lag. It should work more efficiently, and
should be easier to understand and interface to.

I am looking forward to reporting next year
on the status of this ongoing project.

References

Fox, T.,

O'Dell, M.,

Newland, P.,

"User and Switch Packet Digital
Hardware," Fifth ARRL Amateur Radio
K& ,--,-------Corn uter Networking Conterm-

"An Introduction to the HUB
Operating Svstem". Fifth ARRL

CGiice. AKRT;;--p986;---
Amateur R>dio Corn &er-N~~~or~Yii~

I I

"A Few Thoughts on User Verification
Within a Partv-Line Network", Fourth
ARRL Amate& Radio Comuter--- --metwor~np-(:on~rrence,ARRL,1 85$

--

Feinstein, H., "Authentication of the Packet Radio
Switch Control Link". Fifth ARRL
Amateur Radio Computer Net-
C?YiKl%i%iice, AKRL,rYSb--

Borden, D., "The Network User Interface", Fifth
ARRL Amateur Radio Corn uter
m~~~r~~pTTonference,IIRRL,1 86--%

Fox, T., "CCITT X.224 Transport Layer
Protocol Basic Description", Fourth
ARRL Amateur Radio Corn uter---
metwork~~~C~n~rence,TIRRLT1 8!7--%

Fox, T., "AX.25 Network Sublayer Protocol
Description", Third ARRL Amateur
Radio Corn

--
-- --Conference, -Al&c

u7??7 Networking,1984---------

Fox, T., "Annex A Through F For AX.25 Level 3
Protocol", Third ARRL Amateur Radio
Computer Networking Conrerem

L 19 84
- - P - s - ----------

Fox, T., "Amateur Routing and Addressing",
Fifth ARRL Amateur Radio Corn uter
NetworkinnC6Gi3%Y%Zce, AlG&dk6--

5.83

