
Software Design Issues for the
PSI86 Advanced Packet Network Controller

Brian Kantor, WBGCYT
Academic Network Operations Group

Office of Academic Computing
University of California, San Diego

Abstract
A fast network for amateur radio requires sophisti-
cated node controllers to work well. Key to the per-
formance of advanced node controller hardware is
the design of the on-board software. Issues of
highly-efficient device drivers, protocol encapsula-
tion, and process management must be addressed
to ensure acceptable performance with limited
memory and affordable hardware. PS- 186
hardware design issues are discussed in a com-
panion paper by Michael Brock, Franklin Antonio,
and Tom LaFleur.

1. Introduction
A high-throughput data network must consist of both high

speed links and fast network node controllers. To achieve the
high throughput in the controller requires both good hardware
and efficient software.

The PS-186 offers a highly efficient hardware design
including very high speed input/output and a fast processor.
The PS-186’s high-speed DMA channels allow much of the I/O
to proceed in parallel with computation, thus overlapping I/O
and processing that in a less sophisticated system might need
to proceed serially.

However, even the most advanced hardware can be crip-
pled by inefficient software that wastes CPU and I/O resources
rather than applying them to useful processing. To take full
advantage of the PS-186 architecture, we have chosen to use
a multi-tasking system that can support several programs run-
ning at once. By dividing up tasks into those that are time-
critical and those that are not, we can set up the critical tasks
in the system such that they will receive the required CPU
attention. Less critical tasks will proceed as time permits.

The PS-186 multi-tasking operating system is based in
general terms upon the UNIX@ and other similar simple operat-
ing systems. In particular, many of the ideas and practices
used have been taken from those presented in the MINIX [IO]
and XINU [2,3] model operating systems.

2. Software Organization
The PS-186 operating software can be divided into two

categories. One of these is the central or core part of the sys-
tem, referred to as the kernel. It is responsible for all
supervisory low-level I/O functions, process and memory
management, interrupt handling, and initialization, and time-
critical tasks. The remaining software is termed the user level
software, although there are, strictly speaking, no users on this
system. The true distinction is that while there may be many
“user” processes running at one time, there is only one kernel.
Author’s current address:
electronic: brian@sdcsvax.ucsd.edu
paper: Office of Academic Computing B-028, La Jolla, CA 92093 USA
UNIX is a registered trademark of AT&T Bell Laboratories

User processes can be stopped while they are waiting for
input, or while the kernel is handling some other event such as
an arriving packet. They are typically used for purposes that
are not time-critical and that can operate independently of par-
ticular hardware status. A few examples of tasks that might
better be placed in user processes are table lookups, help
menu displays, and the like. These are things that can
proceed in parallel with other similar tasks.

The kernel, on the other hand, is strictly single-threaded
- it can only execute by itself, and is intended for those tasks
that need to have exclusive access to the processor or dev-
ices, such as interrupt handlers and device drivers.

User processes do NOT directly access devices, nor do
they handle interrupts. All user processes communicate with
the kernel by means of system calls that cause the kernel to
perform some task on behalf of the user process. A common
example is a read or a write - data transfer between a user
process and a device.

The kernel is responsible for performing all encapsulating
protocols below some arbitrary level, which we have chosen to
be at the “data stream” level. That means that when an
AX.25 connection is made to the PS-186, the kernel softwan?
is responsible for the acceptance, acknowledgement, and
eventual knockdown of the connection. The kernel will extract
the data field from the incoming AX.25 packet and make it
available to a user process executing an appropriate read.
Likewise, a user process that wishes to send data over an
open AX.25 connection will give the data to the kernel by
means of a write system call, and the kernel will do the encap-
sulation necessary to send the data via AX.25 and then
queue it for transmittal by the appropriate device.

When there are multiple protocols involved, such as
TCP-IP on AX.25, the kernel does the multiple extractions and
encapsulations as required, so that the user process again
works only at the data level.

The decision on whether to place a particular task in the
kernel or leave it to user-level processing is based on a
number of criteria, some of them empirical. In general, any
task which can wait to complete without impacting the perfor-
mance of other tasks can generally be placed in a user-level
process, whereas tasks that have a number of process depen-
dencies pretty much have to go inside the kernel. Additionally,
any protocol encapsulation or unwrapping that does not
generate additional packets can be placed in the kernel,
thereby making that function available to all user-level
processes by means of a uniform system call.

3. Input-Output
Each device in the PS-186 has a module of code associ-

ated with it in the kernel that does the low-level input-output
interface to the actual hardware. This module is often referred
to in the literature as a device driver.

78

At the low level hardware interface, a device driver is
responsible for taking data to be output from some generalized
system data structure, and actually outputting it through the
corresponding piece of hardware. It also must accept incom-
ing data from the hardware device and place it into a system
data structure for further processing. It is common for device
drivers to operate in an interrupt-driven mode, with their
actions being invoked in response to “completion” or “ready”
signals from the hardware. We have chosen this method over
a perhaps simpler scheme where the main software loop sim-
ply repetitively checks for device availability, because the latter
scheme potentially wastes a tremendous portion of the avail-
able processing power. Additionally, the various drivers make
use of the PS-186’s DMA (Direct Memory Access) capability to
move the actual data between memory and the device without
the need of the CPU to read and write every byte.

There also must be a simple and consistent higher-level
interface to the system data structures that the low-level dev-
ice drivers access. We have chosen to implement this inter-
face as read and wrl’te system calls that invoke high-level por-
tions of the device drivers. Additionally, there are both high-
and low-level configuration, status, and initialization functions
that are logically part of the device driver. Thus each driver
can be divided into two logical functions, referred to as the
“top” and “bottom” of the driver.

The “bottom” function is the interface to the hardware; it
is invoked in response to an interrupt from the actual device.
Typically its sole function is to move data to and from the dev-
ice and an associated memory buffer or buffer queue.

The “top” function is the interface to the kernel read and
write system calls. It does the opposite of its corresponding
“bottom” half; where the bottom half places incoming
hardware data into a buffer, the top half will remove the data
from the buffer and give it to the process executing the read
kernel call.

When the PS-186 kernel has data to be sent out of a
serial port (in response to a write system call), the device
driver is called to accept the outgoing data. The driver adds
the data to the tail end of a queue of data waiting to be sent,
sets a flag indicating that there is indeed data to be sent, and
returns. Later, when the output device finishes with the data it
was sending, it will cause an interrupt to occur, and the “bot-
tom half” of the appropriate device driver will take the next
chunk of data from the queue and send it to the device. Thus
the kernel (and therefore user processes) need not wait for I/O
on a device to complete before resuming proceeding.

Data buffers and queues are dynamically allocated; when
data is received or generated a “buffer” (a block of memory) is
allocated from the pool of available memory to hold it, and a
“pointer” that contains the memory address of the block is set
up. To save the time that would be wasted in copying from
one block of memory to another, data is passed from module
to module by passing the pointer to the memory buffer in
which the data resides, rather than copying the data itself.
When the data is finally consumed, either by being output by a
device, or copied into a user-level (outside the kernel) buffer
by a read system call, the memory space used is returned to
the available memory pool, and the buffer pointer is derefer-
enced.

When a call to the kernel with data to be output (a write
call) would require allocation of more memory buffer space
than is allowed, the process making the call is stopped by the
simply not returning from the system call to that process until
there is space and the write can be completed. Since “block-
ing” the process in this manner does NOT stop interrupt ser-
vice no: other kernel functions the device will eventually out-

put enough data to free up sufficient memory for the write to
complete and for the user process to resume.

On input, if a chunk of data arrives ancl there is no
memory available to hold it, the only practical procedure is to
simply discard the data. We anticipate having a large amount
of memory available for data buffers, as well as expecting
good throughput, so we do not anticipate that it will necessary
to discard data often. As a practical note, we ha.ve decided to
provide each input device with its own memory buffer limit so
that no one device could hog all available memory and shut
out input from other devices even in the most pathalogical of
cases. The overriding assumption is that higher-level proto-
cols will handle packets lost due to memory congestion in
much the same way that packets lost due to collisions or chan-
nel congestion are handled.

A kernel reac!call will return data from the input queue to
the user process; if there is no data in the queue, the user pro-
cess may elect to wait until there is (“read-wait”) or just return
(“read-no-wait”), When data is available, it is copied into a
buffer space provided by the user process (typically a charac-
ter array), and the memory buffer space is released to be
reused on subsequent input events.

One can view the input-output streams as a series of
filtered interfaces to the raw packets that are being received or
sent. Thus it is possible to open a connection that consists of
raw AX.25 frames, an AX.25 connected mode stream, IP
packets in SLIP, IP packets in AX.25, TCP in IP in AX.25, etc.
This is controlled by the parameters passed to the kernel in
the open system call.

4. Devices
The PS-186 devices that are most interesting are the

several serial controller chips that form the communications
interfaces. (There is an SCSI controller option for general
device access, such as to a disk or floppy controller, but we
will not discuss that here.) The serial controller chosen was
the Zilog 8530 SCC; the hardware design considerations that
lead to it being chosen are ldiscussed in the companion paper
on the hardware design of the PS-186.

The 8530 SCC can do both asynchronous serial I/O (as
perhaps to a terminal or printer), and HDLC synchronous,
such as is used in the AX.25 protocol. Any of the PS-186’s
serial ports can be configured to operate in either of these
modes. We therefore have a more complex device driver than
if the PS-186 had fixed serial port allocations, since the device
driver must be able to handle both sync- and asgnc-configured
devices based on parameters stored in a table: The driver is
also responsible for setting up the modes of the serial ports in
the first place.

5. Protocol flandling
Fundamental to the operation of communications proto-

cols is the concept of layefhg or encapsulation, whereby data
is successively encapsulated or “wrapped” in layers of proto-
col as it is prepared for transmission, and “unwrapped” at its
destination.

The basic concept uscld is known as a switch. As a rail-
road switch controls the pat11 of a train, the switch controls the
path that data takes through the various levels of encapsula-
tion and unwrapping. A protocol switch makes the data pass-
ing decision based on a field contained in each protocol’s
header that indicates what kind of protocol may be further
encapsulated within the data field of the current packet.

The protocol handling scheme that we chose to use in
the PS-186 is located in trle kernel software. By keeping all
protocol wrapping and unwrapping inside the main single-

79

00
0

-DATA-

KISS
Packets

AX.25
Packets

-KERNEL- -USER PROCESSES-
I I

AX.25
Streams

SLIP
Packets

ICMP

TCP

c

Async
Characters Figure 1.

user0process

Data Routing in the B-186
Showes the routes that data packets may take depending on protocols involved. Data is received
as packets at left; as it passes through the various protocol handlers and switches it is sent to
other protocol modules as required until finally it is fully unwrapped and available to the user
processes at the right. Data to be sent follows essentially the reverse path from the user process
through successive layers of encapsulation until it is ready to be sent. The criteria for determining
further processing are shown on the lines connecting the various boxes.

thread portion of the operating system and thus making them
available to all processes on the system, we simplify greatly
the amount of protocol handling required in the various other
processes.

Each PS-186 communications interface is configured at
system startup time to handle one type of outermost protocol
(for example, KISS AX.25 is appropriate for a serial interfaceto a radio link, or perhaps SLIP for a hardwire line.) As a
packet is received from an interface, it is examined according
to the rules that have been set up for that interface. When that
packet has been received and the appropriate acknowledge-
ments generated, the contents of the packet and selected
fields extracted from its header are passed to the appropriate
protocol switch. The protocol switch then examines the packet
contents and routes the data further to the next protocol
module, as appropriate. This process repeats until there is no
further enclosed protocol, until the data has been fully
extracted and is available in a buffer queue to be used by
some user process. Not until the data has been fully extracted
does it become ready to leave the kernel environment.

A concrete example may make this clearer: Suppose
that we receive an AX.25 packet on a serial link that is
attached to a radio. If it is for us (as shown by the destination
callsign) we will acknowledge that AX.25 packet (if appropri-
ate), and if it was a data packet (UI or I frame), we will pass it
to the AX.25 protocol switch. That switch will examine the
Protocol ID byte that is part of the AX.25 packet. If the PID is
for a stream connection (a normal mode AX.25 connection
such as is commonly in use today for keyboard-to-keyboard
typing), then the packet will be further switched by the AX.25
Stream switch, which will send it (based on the callsign in the
source field of the AX.25 header, since there can be only one
connection per source callsign) to the user process that is ser-
vicing that stream connection.

If, instead, the PID is for ARP, RARP, RIP, or one of the
other raw packet protocols, the data will be sent to the user
process that handles that kind of packet - to build address or
routing tables, for example.

A packet with the PID indicating an encapsulated IP
packet is passed to the module that does IP protocol - check-
sums and other integrity checks. If the packet is ok by IP
standards, the IP module will call the IP protocol switch, which
will examine the Protocol ID byte in the IP packet (distinct from
the PID in the AX.25 packet). This will in turn route the IP
packet to another protocol handler, such as UDP, ICMP, RDP,
or TCP - whichever we have implemented. Again, those are
expected to route the data based on fields in the headers of
these protocols.

TCP is an interesting example of imbedded protocols and
switching. Each TCP connection as seen on a host is desig--
nated uniquely by a 64-bit number that is the concatenation of
the distant host’s Internet address (32 bits) and the local and
distant TCP logical port numbers (16 bits each). Since when a
TCP connection is initiated, the originating host must chose a
new (not currently nor recently used) logical source port
number, there can be multiple logical ConneCtiOnS between,
TCps on the same two hosts even to the same distant port.
The data switch in the receiving TCP is required to separate
out the streams of data based upon the 64bit stream
identifier, and deliver each to potentially Separate user
processes as appropriate.

6. Process Control
The PS-186 is organized as a multi-tasking System,

implying that more than one process may be running at a time.

There is always a “null” process that is constantly ready to
run; when there is no other process ready to run, the null pro-
cess is active.

Processes are created ‘as needed and destroyed when
no longer needed. In this manner, resources are not con-
sumed on idling processes that are merely sitting around wait-
ing in case they are needed. For example, when an AX.25
connection is made to the PS-186 network node, a process is
started to handle incoming stream data. This process will exit
and its resources will be deallocated when the connection is
closed. Each such connection will cause a separate process
to be spawned.

User-level processes dlo not perform I/O operations to
devices; they instead make system calls to the kernel that
invoke the required I/O. When a process makes a system call
that would require some time to complete (such as l/O), that
process is blocked - that is, placed in suspended state, and
another process is resumed. Periodically (in response to inter-
rupts from the system real-tirne clock), the current process will
be suspended and another selected to run. Thus no process
can hog CPU resources, and I/O can proceed in parallel with
ordinary processing.

We feel that multitasking is a superior method in this
application, although it is much more complex than a single-
threaded program, because much of what goes on in a device
like the PS-186 is not time-critical, and we can therefore
devote the CPU to high-priority events (such as the arrival and
buffering of a packet) that are truly critical.

7. Conclusion
We feel that the PS-‘186 Advanced Packet Controller

represents a significant step towards the construction of an
efficient and practical amateur radio data network. By combin-
ing fast hardware and efficient software into a flexible package
that accomodate today’s and tomorrow’s protocols, we believe
we have advanced the network one step further along the
road to completion.

8. References

III

PI

PI

141

Fl

PI

1171

PI

PI

WI

AT&T, “Communications Protocol Specification BX.25”,
Publication 54001 Issue 2 (June 1980)

Comer, D., Operating System Design - the XMJ
Approach, Prentice-Hall (1984)
Comer, D., Operating System Design - Internetworking
with XINU, Prentice-Ha’:1 (1987)

DEC/lntel/Xerox, “The Ethernet - A Local Area Network
Data Link Layer and Physical Layer Specification.“, Ver-
sion 1 .O (Sep 30 1980)

Fox, T. L., “AX.25 Amateur Packet-Radio Link-Layer Pro-
tocol”, Version 2.0, ARRL (Ott 1984)

Griffiths, Georgia, and G. Carlyle Stones, “The Tea-Leaf
Reader Algorithm: An EEfficient Implementation of CRC-1 6
and CRC-32”, Communications of the ACM, 30,7 (July
1987)

IEEE, Logical Link Control, ANSI/IEEE Std 802.2-1985
(1984)
Postel, 3. et al., “DDN Protocol Handbook”, USC-IS1
(1986)
Tanenbaum, A., Computer Networks, Prentice-Hall
(1981)
Tanenbaum, A., Operating Systems - Design and lmple-
mentation, Prentice-Hall (1987)

81

