
A Totally Awesome High-Speed Packet Radio I/O Interface for
the IBM PC XT/AT/386 and Macintosh II Computers

Mke Chepponis, K3MC

Bernie Mans, AA4CG

ABSTRACT

This paper describes a plug-in card for IBM PC XT/AT/386 compatible comput-
ers or the Apple Macintosh II computer. It is designed to handle two 56 kilobit/sec
full-duplex channels via DMA and 10 slow speed (19,200 bits/set or less) channels
via interrupts without main processor intervention. The board uses an NEC V40 pro-
cessor and up to six Zilog 85C30 Serial Communication Controllers, together with
either 256k bytes of DRAM or 1 megabyte of DRAM to offload the main processor
from low-level interrupt fielding. It communicates with the main processor with an 8k
byte memory window in the IBM version, and directly with Macintosh II main
memory using the Bus Master concept of the NuBus. It is targeted at replacing exist-
ing TNCs in the high-speed networks of the future; special consideration has been
given to the support of TCP/IP. Even the minimum (easily upgradable) implementa-
tion with only one 85C30 outperforms all existing TNCs, relying on the host PC only
for bootstrapping, power, and of course, an effective user interface when called for.

History
The history of packet radio is replete with

ideas, some great, some not so great. One thing
we did with this project was to survey the exist-
ing solutions for serial communications with a
host computer, and to generate a solution that
did not have any of the handicaps of previous
methods.

In the beginning, folks used TNCs, usually
running code that expected the user to attach a
“dumb” terminal to them on one end, and to
attach an AFSK 1200 baud Bell 202compatible
modem to an ordinary FM radio via the external
speaker and microphone jacks.

When Phil Karn, KA9Q, wrote TCP/IP
software for the IBM PC XT/AT (and it was
subsequently ported to many different
machines, including the Macintosh, Atari,
UNIX’, and Amiga), he initially used “nailed-
up” AX.25 connections, that is, ordfnary TNCs
in the Transparent mode. The disadvantages of

1 UNIX is a trademark of AT&T Bell Laboratories.

such an approach was obvious to all of us, and a
simplified TNC interface designed specifically
for communicating with computers (the so-
called “KISS” TNC*) was implemented. The
KISS interface allowed the host computer to
completely control the TNC, without the both-
ersome command interface optimized for
human use, and it quickly became the “way to
go” to use TCP/IP on the air. Still, it used
1200 baud Bell 202compatible modems on the
radio side. Indeed, the KISS TNC was never
intended to be anything but a stopgap measure.

Last year, Dale Heatherington, WA4DSY,
designed a reproducible 56 kilobit/sec modem3.
With the help of Doug Drye, KD4NC and a

2 Chepponis, M., and Karn, P., “The KISS TNC:
A simple Host-to-TNC communications protocol,”
AR R L Amateur Radio Sixth Computer Networking
Conference, pp. 38-43, Redondo Beach, 29 August
1987.

3 Heatherington, D. A., “A 56 Kilobaud RF
Modem,” AR R L Amateur Radio Sixth Computer Net-
working Coqference, pp. 68-75, Redondo Beach, 29 Au-
gust 1987.

host of other Georgia Radio Amateur Packet
Enthusiasts Society (GRAPES) members,
modem board sets, complete schematics, board
layouts and parts lists became available at very
reasonable cost. Since then, GRAPES has also
made a complete 56k kit available. With the
introduction of this modem, Dale needed to
figure out a way to connect it with some packet
radio hardware and software. Since the TNC-1
could not handle 56k bits/set, and because the
existing TNC code for the TNC-2 was unavail-
able, Dale chose to perform substantial
modifications to the KISS TNC-2 code to permit
it to handle 56k data. Also, since no other net-
working software could handle the requirements
of this data rate, Dale chose Karn’s TCP/IP
software, because it already worked with the
KISS TNC, and needed no modifications to run
at this higher speed. Because the TNC was
essentially a synchronous to asynchronous con-
verter, the 56k radio side was converted into a
19.2 kbaud serial data stream and the effective
throughput was limite,d to only 19.2 kbaud.
This is how all 56k modems (to our knowledge)
still operate.

What we wanted was true 56k baud system
throughput, and this mandated an auxiliary I/O
processor if we wanted to use the popular IBM
PC XT/AT/386 and Macintosh II hardware. To
be sure, four other cards plug into the IBM XT
bus, eliminating the need for a TNC: the HAPN
card, the 8530-based Eagle card, the Pat-Comm
PC-100 and the DRSI card. All of these cards
are not appropriate for these higher data rates
because none of them have DMA nor on-board
CPUS.

There are two other products that should
be mentioned: the TAPR NNC and the PS-186.
The TAPR NNC did not take off because it was
underpowered for the jobs we had intended it to
do. The PS-186, on the other hand, is an excel-
lent choice for mountain-top, solar-powered IP
switches, and other uses that require low power
consumption and several medium-speed chan-
nels.

Our solution is particularly cost-effective.
Utilizing the very inexpensive IBM PC/XT
compatible systems available today with this I/O
card costing approximately an additional $200,
we can provide true 56 kilobit performance at a
very reasonable cost. If one compares the cost
of a comparable 1200 baud station, in terms of
dollars per bit per second, the 56k solution is
indeed very cheap!

Justification

The board consists of an NEC V40
microprocessor, at least one 85C30, and at least
256k DRAM, all running at 8 MHz. The V40
provides, most importantly, instruction set com-
patibility with the existing IBM PC XT/AT
environment (indeed, the V40 instruction set is
a superset of the 8088 instruction set, and con-
tains many instructions of the 80286 processor).
It also provides four DMA channels (these four
channels are used to provide DMA for the
85C30, allowing for very low processor over-
head when all four channels, 2 input and 2 out-
put, are running 56 kilobits, full duplex). There
are three 16-bit counter/timers, 8 prioritized
interrupts, and an NM1 input. In addition, it
provides DRAM refresh support. Running at 8
MHz, this chip provides ample horsepower to
handle five more 85C3Os, for ten more full-
duplex channels, using an interrupt-driven
scheme, for baud rates of 19,200 or less. An
additional pair of 56k channels, full duplex, can
be handled, for a total of’ four full-duplex 56k
channels, if we forsake the low-speed channels;
in this case, two of the full-duplex channels
would be the standard DMA-driven ones, and
the other two full-duplex channels would be
interrupt-driven.

The 85C30 is a CMOS version of the
ultra-popular Zilog 8530 Serial Communications
Controller chip, which is well known in the
Amateur community, is highly flexible and very
popular. It is used in the FAD PAD, the Eagle
card, the DRSI card, the Pat-Comm TNC-220
and AEA’s PK-232. With on-board digital PLL
clock recovery, on-board baud rate generation,
and multiple serial communications formats, it
is indeed the “Swiss Army Knife” of serial
communications controllers. In addition, the
85C30 can provide a single half-duplex Tl chan-
nel (1.544 megabits/se& when we have
modems that run at these rates.

256k bytes of DRAM permit about 30
seconds of data buffer for a single 56k channel.
When all four 56k channels are active (two
input, two output), this memory provides more
than 15 seconds of buffer per channel. This
permits the host to be relatively lax about ser-
vicing this I/O card, and still not miss packets.
It permits full utilization of the bandwidth avail-
able with the WA4DSY 56k modems.

If the (up to) ten ex’tra low-speed channels
are desired, provisions are made on the board

37

Host Bus
(PC bus or

NuBus) p& [
Memory

I

DMA#1I 8530
High Speed

v40 DMA #3 & #4
channels1&2.

I A
CPU

INT#l m 8530
High Speed

I - channds3&4

c , I 1

I 1
Dual Port Control L

8530 I Low Speed

channelsl&2

Simplified block diagram for the “Awesome” I/O Interface.

for installation of AMD 7910 modems, or TI
3 105 modem chips.

How it works
Basically, the card is a separate I/O proces-

sor, a computer on a board. In the case of the
IBM PC XT/AT/386, an 8k byte memory win-
dow is used to communicate with the host.
Several I/O ports are used for configuring the
device. For example, the 8k byte memory win-
dow can be made to appear, under software con-
trol, into any available 8k byte window in the
IBM PC’s address space. This is done by using
an I/O port with the high-order bit being a
“memory enable” bit, and the remaining 7 bits
used as the upper 7 bits of the address of where
one wants the memory to appear.

The interface is extremely flexible.
Another I/O port has a single bit which is tied
directly to the V40 reset pin. Upon power-up,
the 8k byte memory window is disabled, and the
V40 is kept reset. The host enables the
memory and places it into the address space
where it is desired. Then it loads code into the
8k byte window, and then releases the reset pin
by writing into the other host I/O port. At this
point, the V40 is running.

.

With 256k bytes memory, the upper two
address bits out of the V40 are ignored. This
has the effect of mapping the 256k bytes into
the V4O’s address space four times. The advan-
tage of this is that when the V40 reset wire is
held high, it jumps to location FFFFO. Since
the 8k byte memory window into the host is
always mapped into V40 addresses FE000 to
FFFFF, it is trivial to initialize the I/O proces-

38

sor. Also, since the interrupt vectors for the
V40 begin at location 00000, all of the interest-
ing parts of the address space are made available
without special tricks.

The 8k byte window is dual-ported with
the V40 and host processor. In addition, the
host always has priority when accessing this
memory. It is occasionally necessary to insert
wait states into the host processor’s access
requests, but since the V40 is mostly DMA
driven by the 85C30, the host waits on the aver-
age only two T cycles, or 250ns at 8 MHz. This
means, for example, that a lk byte packet can
be transferred from the I/O card to the host in
only 770 microseconds, on average.

In the Macintosh II the situation is even
better. The NuBus, the bus used on that
machine, is capable of having Bus Masters. A
Bus Master can seize control of the bus, and
perform data transfer operations between itself
and either main memory and/or other I/O dev-
ices. One way to think of it is as a superset of
DMA capabilities; perhaps one could call it
“smart DMA”. The Macintosh II writes the
addresses into the board where to retrieve data
(for transmitting) and where to deposit data (for
receiving) and this board takes care of the rest!
This means that the Macintosh II computer can
be doing many more things, because it does not
have to move memory blocks around like it
needs to do in the IBM PC case. It also means
that the 256k byte on-board memory buffer is
not required to be quite so big, as the Macin-
tosh II main memory can be used as the buffer.

One may ask why we didn’t use DMA on
the IBM PC XT/AT machines. In addition to

the limited number of DMA channels, the vari-
able latency time of DMA servicing on the IBM
machines complicates things, such that we
would need a very sophisticated buffering
scheme if we were to be certain that bytes were
not dropped due to other I/O (especially hard
disk or floppy activity) on the IBM PC’s bus..

How use it

The I/O card is particularly easy to pro-
gram. We have identified two classes of pro-
gramming, the lowest-level driver code and the
application code, which makes use of the low-
level drivers.

For the low-level code, we have kept
things as general as possible (practicing the
Computer Science principle of “delayed bind-
ings”) - that is, we have fixed very little about
how one should program the card. We have
fixed two host I/O addresses, as mentioned
above, one for enabling the 8k byte memory
and placing where desired in the host address
space, and one for controlling the V40 reset
wire. Other than that, the low-level program-
mer is free to define how to use the 8k byte
memory window. In particular, which memory
locations are used to specify which 85C30 chan-
nels, which memory locations are used to hold
pointers and length-of-packet values, etc., are
all flexible. Indeed, the entire structure is flexi-
ble from the low-&e1 programmer’s point of
view. We do interrupt the main processor when
the I/O card needs attention (and this interrupt
is strappable so you can use a free interrupt of
your host), such as when we’ve received an
incoming packet or when we’ve finished
transmitting a packet. But, given the amount of
buffering we’ve provided, the host need not
respond instantaneously to this interrupt. In
addition, how the interrupt’s reason is commun-
icated to the host via the memory window is
completely left up to the low-level programmer,
enhancing flexibility.

For the applications programmer, three
packages are available for the I/O Toolkit: one
for initializing the V40, one for receiving a
packet and one for transmitting a packet. These
packages interface with both Aztec C and Turbo
C for the IBM PC, and with Lightspeed C and
MPW C for the Macintosh II. Of course, com-
plete source code isI provided with the Toolkit
routines”.

Applications

We have concentrated on the TCP/IP use
in “standard” packet radio, but here are some
other things we are planning to do with these
cards.

The first thing is to build a complete 56k
network node, based on Phil Karn’s proposa15.
Due to the stinging loss of 220 to 222 MHz, our
options are more limited, but nevertheless, we
intend to build a three-port IP switch, with
channels on .43, .902 and 1.2 GHz. Two of
these frequencies would be receive-only fre-
quencies, and the other would be a transmit-
only frequency, for one of the switches. The
other switches in the :set would have compli-
mentary transmit / rece:ive frequencies. Such a
scheme guarantees that no collisions would take
place, and with sufficient link margins, would
assure perfect transmission/reception at all
nodes.

Other uses are also apparent. For
instance, full color digital SSTV with 256 x 256
resolution and 6 bits each of red, green, blue
takes less than 30 seconds to transmit. Error
free reception is possible, given that the picture
is digital, transmitted with error detection and
retries. In TCP/IP, the File Transfer Protocol
could be used for pictures that must arrive,
error-free, or UDP, wi,th less-overhead, could
be used if some 10s~~ or errors could be
tolerated.

Digital voice is yet another interesting pos-
sibility. With the Delanco-Sprv DSP board or
the n e w 320C25based DSP b o a r d t h a t
TAPR/AMSAT is workjing on plugged into a PC
with the I/O processor card, audio from a
microphone and preamp could be digitized by
the DSP board, compressed, shipped via UDP
on the RF link, then uncompressed and con-
verted back to audio. “Voice mail” would be a
real possibility with such systems!

4 Indeed, if there is one distinguishing feature com-
mon with all TCP/IP experimenters, it is the perceived
duty to provide complete source code for ~11 of our
programs, free, as we believe that others can learn
from our code and can further enhance it and re-
release it back to the Amateur Community, in the best
spirit of Amateur Radio.

5 Karn, P., “A High Performance, Collision-Free
Packet Radio Network,” AR R Id A ~~~CIWIIS Rc~rlm Sixrlr
Comp1ttm Nrlworl\itl,q ~o~~/w~w(~, pp. M-89, Redondo
Beach, 29 August 1987.

39

The DSP board could also act as modem
for the I/O card. It would be easy to experi-
ment with different modems, all digitally real-
ized within the DSP card, choosing the best one
for the transmission medium.

And we’ve only begun to explore the
many applications for this high-speed interface.. .
What we hope what we have communicated is
that real 56k bits/set allows much, much, more
than simply faster bulletin board access or
quicker “hunt-and-peck” ham-to-ham packet
communication. A brave new world of distri-
buted networks and file systems is open to the
amateur with this interface and high-speed RF
data links!

Status Updates

Those interested in the an up-to-date
status report on this project are welcome send
electronic mail via usenet or the Internet to
mac@leg.ai.mit.edu or !pitt!aallcg!bernie. You
may also dial-up host AA4CG directly at
904/795-3211 at 2400, 1200, or 300 baud,
eight-bits no parity. Login as user “packet”
and password “radio”.

Acknowledgements

We would like to thank Phil Karn, KA9Q,
for suggesting the major features of this I/O
processor, especially his comment “Design it
like an Ethernet card6” We also thank Bob
Hoffman, N3CVL, for his expert typesetting,
once again.

6 Indeed, we used the Western Digital WD8003E as
our model.

