
Amateur TCP/IP in 1989

Phil Karn, KA9Q

ABSTRACT

This paper is a report on the status of the KA9Q Internet Protocol package, also
known as NET. Most of the items proposed in last year’s paper have been completed,
and additional features have also been implemented by the author and other contribu-
tors. The use of TCP/IP with the WA4DSY 56kbls modems is also discussed, along
with some ideas on channel access methods that would improve the efficiency of these
modems.

Introduction

Amateur TCP/IP continues to grow in
popularity. I n ampr.org, the portion of the
ARPA Internet name space reserved for ama-
teur packet radio, there are now over 2300
registered IP address assignments in 29 coun-
tries. NET/ROM networks as well as “plain”
AX.25 paths are being used to carry IP
datagrams. Most of this activity uses convention
1200 baud modems, but higher speed operation
with WA4DSY 56 kbps modems is also growing.
A newsletter edited by Rich Vitello WAlEQU,
“The New England TCPer”, is devoted to ama-
teur TCP/IP operation.

NOS - Software Restructuring

I have completed the internal restructuring
of the NET software described in last year’s
paper. The original version, on which the
“Dayton” releases 890421 .O and .l from
N3EUA are based, used a commutator loop
structure. External events such as packet
arrivals and protocol state changes, made
“upcalls” to functions within each application
that did the actual work. Applications therefore
had to be structured as state machines driven by
external events (the upcalls), and this became
very clumsy for the more complex applications
such as the FTP client.

The new version, referred to as “NOS”, is
internally quite different as it supports internal
multitasking. Each task is a logically separate
program. Tasks have private stacks; in C, that
means they have their own automatic variables.

On the other hand, they share the same set of
static and global variables. Tasks may block,
that is, they can call a special system function
that does not return until a specified event hap-
pens. Whenever a task blocks, it is “put to
sleep” and the system picks another to run until
it too blocks. Tasks may wait for events that
are signaled by hardware interrupts (e.g., when
a packet arrives or a key is pressed) or software
(e.g., messages from other tasks.)

The kernel (that part of the system that
controls the running of tasks) is non preempt-
ing. That is, when a task gains control of the
system, it continues to run until it explicitly
relinquishes control by waiting for an event.
This is in contrast to the preempting kernel
commonly found in timesharing systems, where
a running task can be suspended and another
run at any time by an interrupt. The choice of a
non preempting kernel is an important feature,
since it avoids a whole class of potential bugs in
which shared data being modified by one task is
left in an inconsistent state when preemption
occurs. The only situation that requires care is
the modification of global data by an interrupt
handler, since interrupts can happen at any
time. There are only a few such situations
within NOS, and the tasks avoid conflicts by
temporarily disabling interrupts whenever the
shared data is examined or modified.

The main drawback to the non-preempting
approach is poorer real-time response; even if
an external event (e.g., a packet arriving) makes
a task runnable, it will not get control until the

114

currently running task gets around to giving up
the- system and any other runnable tasks have
had their turns. In a networking system like
NET, the only significant “real time” require-
ment is that incoming data not be lost, so
incoming data is buffered at interrupt time until
the main network task can get a chance to pro-
cess it. This only requires that hardware inter-
rupts not be disabled for excessive periods and
that the network task gain control often enough
to empty the incoming buffers before they
overflow. However, the tasks that make up
NET seldom run for more than a few mil-
liseconds at a time before blocking, so this is
not much of a concern. With the exception of
the “hs” HDLC driver discussed later, the only
significant latencies occur when a task reads or
writes a block in the MS-DOS file system.
Because the MS-DOS file system is synchro-
nous, NET cannot run during disk I/O. Fixing
this would require rewriting substantial portions
of MS-DOS and the ROM BIOS, and is outside
the scope of the project.

The “memory model” used by NET on
the IBM PC also changed during the conversion
to NOS. For some time, the “medium model”
(large code, small data) was used; now the
“large model” (large code and data) is used,
allowing the use of more than 64K for data
buffering. Although the need for more data
space rose gradually as the package grew, the
main impetus for change was the need to allo-
cate a stack for each task. The conversion to the
large data model was much easier than I had
expected. The only module affected was the
storage allocator, the only portion of the pack-
age that deals with data blocks larger than 64K.
The enlargement of block size fields From 16 to
32 bits and the addition of the “huge” keyword
to various pointers was the only change required
to the allocator.

One problem that is still present in NOS is
the need to keep careful track of allocated
storage blocks. Unlike a conventional time shar-
ing kernel (e.g., UNIX), storage allocated by a
task in NOS is not automatically freed when the
task completes. Tasks frequently allocate storage
(e.g., a data buffer) and immediately pass it off
to another task, and I considered it too time-
consuming to have to keep careful ownership
records for each allocated block. Dynamically
allocated storage is also used in global data
structures (e.g., TCP control blocks) that do not
necessarily belong to any particular task, and

this would complicate the record keeping even
more.

Shortly after creating NOS I decided to
switch to the Borland Turbo-C compiler as the
primary compiler for the PC version. This
change was made for several reasons: the wider
availability and lower cost of Turbo-C, making it
easier for others to configure and modify the
code; fewer compiler bugs, especially in the new
ANSI C features; better support for PC-specific
hardware functions, allowing the elimination of
some assembler code from the package; and the
provision of an assembler with a built-in macro
allowing C-callable assembler functions to access
their arguments in a memory-model indepen-
dent fashion.

Sockets

Very little was changed inside the protocol
modules per se in the NOS conversion. A new
module was instead placed on top of the exist-
ing TCP and UDP modules, implementing an
application programming interface based closely
on the “socket” mechanism in the Berkeley
version of UNIX. The socket code provides the
upcalls required by the existing TCP and UDP
code . These upcall functions signal events
internal to the socket module so that the socket
primitives (e.g., send or receive data) can block
appropriately. Applications using the socket
interface do not need to provide any upcall
functions.

The Berkeley socket interface supports
protocols besides those of the Internet. It was
therefore fairly easy to allow applications to
access the AX.25 and NET/ROM protocols by
creating two new “address classes”, AF AX25-
and AF-NETROM. Either the virtual-circuit
mode (using I frames) or the datagram mode
(using UT frames) can be selected.

Although the socket interface follows the
Berkeley UNIX model as closely as possible,
there are some unavoidable differences. The
most important difference is that socket descrip-
tors in NOS are distinct from file descriptors,
unlike Berkeley UNIX where they occupy a
common set of integers. In. other words, socket
descriptor 1 does not refer to file descriptor 1,
and the regular file I/O functions read0 and
write0 cannot be used on sockets. All socket
I/O must be through the recv() , send0 and
related functions. There is also a special
close-s() call for sockets., since the regular

115

close0 function expects a file descriptor. Emu-
lating the Berkeley model more closely would
require either a major internal change to
Borland’s standard C library or an independent
reimplementation, and these changes could not
be applied very easily to non MS-DOS environ-
ments.

All of the applications in NET have been
rewritten to use sockets. In many cases the code
became considerably simpler and smaller, partic-
ularly in the more complex applications such as
the FTP client. The simpler programming style
made it possible to add features to the clients
relatively easily; for example, the FTP client
now prompts for user names and passwords dur-
ing the login sequence, and it automatically
suppresses echoing of the password as it is typed
in. The user may now “type ahead” a series of
commands to FTP without having to wait for
each transfer to complete first.

Domain Name Service
Another feature that was added after the

conversion to NOS is domain name support.
The original version of NET relied on a local
table of host names (stored in the file
/hosts.net) to translate machine names (e.g.,
ka9q.ampr.org) to numerical IP addresses. This
technique was originally used by all of the sys-
tems on the ARPA Internet, but as the net
grew this method rapidly began showing signs of
strain.

The standard method now used in the
Internet for name-to-address translation is the
“domain name system” that consists of a distri-
buted hierarchical database and servers that pro-
vide access to this data. Names in the domain
name system are hierarchical, with the top level
on the right. Levels in the hierarchy are
separated by periods, and the system allows
delegation of naming authority to a different
entity at each level. It is important to under-
stand that a domain name does not say *any-
thing* about the geographic location of the sys-
tem being named, and it is even more important
to understand that *the individual components
of a domain name do not constitute a route to
that system”. The only purpose of the domain
system is the hierarchical division of the name
space along administrative or political lines;
routing is an entirely separate function that
belongs down in the network layer.

The NOS version includes a domain client
only; that is, it requires Internet access to a
server running on a different type of system in
o r d e r t o work automatically. However,
responses from the servers are stored locally in
the file /domain.txt and reused, and the user
may add entries to this file manually if a domain
server is not available via the net.

The domain name resolver is a good
example of a feature that was fairly easy to add
to NOS but would have been quite difficult to
add to the old version. Applications querying
the domain system must wait for a response.
Doing this in the old version would have
required additional states in the application
representing domain server response waits,
while in NOS the change to an application was
trivial because the resolve function blocks
automatically.

High speed TCP/IP

Several groups have been using the
WA4DSY 56kb/s modem with TCP/IP. Two
methods of interfacing the modem to the host
computer are being used. The first is the
modified KISS TNC as pioneered by the
GRAPES group in Atlanta. The PC-to-TNC
link runs at 19.2 kb/s, so a single station is
unable to use the full channel bandwidth.

The other approach uses the plug-in
HDLC cards that have become available for the
IBM PC over the past few years. Richard Bis-
bey, NG6Q, and Art Goldman, WA3CVG, have
written a driver for the “Eagle” card, a surplus
8530 adapter card. Their driver makes use of
the Eagle card’s DMA feature, but unfor-
tunately DMA is not supported on all of the
newer HDLC cards such as the Digital Radio
Systems (DRSI) PCPA. I have therefore written
the “hs” driver that uses the PCPA (or Eagle
card) in a programmed I/O mode; that is, the
host CPU copies each byte to or from the dev-
ice as required instead of relying on DMA
hardware. Both drivers work, but mine requires
an essentially dedicated system; whenever the
modem is active the system “locks up” and is
unable to do anything else but service the
modem.

The “Awesome I/O” interface card
designed by K3MC represents the best way to
interface a fast modem to the IBM PC. It can
buffer individual characters on its own, so the
host PC need deal only with complete packets,

116

which have much looser real time requirements.
When the I/O card services the modem the host
PC is free to respond to other interrupts. This
will effectively eliminate the need to dedicate a
PC to handle the modem, and it will allow mul-
tiple modems to be handled on the same sys-
tem.

The network configurations at KA9Q and
WBOMPQ consists of “stripped” PC/XTs that
operate as dedicated IP routers (packet
switches) between local Ethernets and the
56kb/s packet radio channel on 220.55 MHz.
The theoretical throughput for a file transfer
over-this path is about 5700 bytes/set, assuming
a data packet size of 1400 bytes, a modem
keyup delay of 15 ms, 56 bytes of
TCP/IP/AX.25 protocol overhead, and “stop
and wait” operation of TCP. It is interesting to
note that the 15 ms modem keyup delay
accounts for about twice as much overhead as
the three protocol headers combined.

However, the actual throughput between
PC/ATs is only about 3200 bytes/set. There
are two reasons for this. A minor cause is occa-
sional TCP retransmission caused by link noise,
but the major degradation is caused by the ina-
bility to overlap packet transmission or recep-
tion at each site with disk I/O due to the stop-
and-wait mode in which we operate TCP. This
latter reason is the main one, but we have
found that stop-and-wait mode is necessary to
prevent collisions between data packets and
their acknowledgements on the radio channel
that would degrade throughput much more
severely.

Collisions - Again
These collisions can occur even without

hidden terminals on the channel because the
modems take a finite amount of time to key up
or to recognize that another modem has keyed
UP, and these delays create “collision win-
dews”. Fixing this problem (which occurs on
1200 baud channels too) is a major challenge to
amateur packet radio, and I have been investi-
gating two possible solutions to the problem.

The first approach is collision detection,
the theory being that collisions aren’t so bad if
you can detect them quickly enough to abort a
transmission before it has wasted much channel
time. The colliding transmitters then delay for
random intervals and again attempt to transmit
their packets. If another collision occurs, the

transmitters repeat the procedure with random
delays chosen from ever-increasing intervals.

This is the approach used with Ethernet,
also known as IEEE 802.3. Ethernet has been
shown to be very stable even under pathological
overload because of its collision detection
feature. Useful throughput can be well above
90%, depending on the length of the cable and
the size of the packets, with the better
efficiencies coming from shorter cables and
longer packets.

Collision detection is fairly easy to do on
coax because of the relatively low attenuation.
The much larger difference between transmitted
and received signal levels in radio effectively
makes collision detection impossible on a sim-
plex radio channel. However, collision detection
is possible through a repeater. If a user station
operates in full duplex, it can compare its own
signal heard through the repeater with the
transmitted data. If no errors are seen, then the
transmitting station can feel confident that the
packet was not interfered with.

Implementing collision detection with the
WA4DSY modems requires a repeater that can
pass the wideband signal the modem produces
with a minimum of distortion. One way to do
this is with a linear translator similar to the tran-
sponders carried on the AMSAT communication
satellites. A translator bandwidth of 100 KHz
would be enough to accommodate the 75 KHz
wide 56kb/s signal with guard bands on each
side to avoid the phase distortion at the edges of
the translator’s bandpass filter. As with a satel-
lite transponder, this translator should operate
in a crossband mode in order to make full
duplex operation at the user stations relatively
simple.

There is another approach to the collision
problem that also deserves investigation: token
passing. This technique requires considerably
more complex software algorithms than collision
detection, but it has the advantage of being
usable on a simplex radio channel with no extra
hardware. The IEEE 802.4 token-passing bus
standard may be useful as a starting point,
though a radio channel would be much more
complex than the wire bus because of hidden
terminals and higher noise levels. The model
here is that of a voice round table; stations pass
the token (the right to transmit) around a list of
stations, with periodic pauses to allow new sta-
tions (“breakers”) to join the logical ring. To

117

minimize the overhead spent on token passing,
stations should remove themselves from the
logical ring when they do not expect to send
data for a while.

Acknowledgements

Many people have made contributions to
the TCP/IP project, but I would like to cite
several for their major contributions in the past
year: Dan Frank W9NK, Anders Klemets
SMORGV, Russ Nelson, Dewayne Hendricks
WA8DZP and Bdale Garbee N3EUA.

Dan has added a NET/ROM transport
layer module to his earlier network layer code.
Anders ported Dan’s code over to the NOS ver-
sion, adding socket level code to support both
NET/ROM and AX.25 connections. Russ has
assembled a significant collection of packet
drivers for quite a few Ethernet controllers;
these drivers can be used by any protocol
software that supports the FTP Software Packet
Driver specification, including the KA9Q pack-
age. Dewayne has put a considerable amount of
work into porting the NET software to the
Apple Macintosh, giving it a Mac-like user
interface. And Bdale Garbee has done a fantas-
tic job in packaging releases of the pre-NOS PC
code for general amateur release and in answer-
ing user questions.

118

