
Network Information Services
by Brian A. LantzlK04KS

TPALAN Tampa Local Area Network

INTRODUCTION

In the early days of packet radio, you were lucky to find a station or two that you could connect to for a
digital QSO. As time has progressed, BBSs took the role of “generic information providers”, with
bulletins, and E-Mail as their strengths. Current BBSs are used nearly 100% for message handling.

The BBSs have a distinct weakness in the area of providing information to the user. The two main ways
that BBSs provide generic information are:

1) Requiring the user to read certain messages

2) Requiring the user to download certain files.

Both of these provide a learning hurdle to a new user, which will probably cause the user to try to
“stumble through it” without the needed information.

ROSE (and other networking tools) have taken the first steps of network information services by placing a
screenful of text in the memory of the switch/node to answer a few questions the user might have. This is
made simple for the user, requiring him to connect to an alias; no new actions to learn.

The average new user has limited computer experience and very probably NO experience with other E-
Mail systems. Networks are a concept that scares even many long-time packeteers. An information
provider should take these into account and also provide a way to be interactive, at least to a point.

TNOS NETWORK INFORMATION SERVER

One of the new, unique features of TNOS is the Information Server. This is a Hypertext driver that allows
tutorials, help systems, on-line surveys, etc. to be easily added to NOS. Sub-directories can be added
easily to allow multi-level nesting within each Server.

The user connects to an alias (i.e. “INFO”) and is presented with a numbered menu of available options.
Each entry can be either a Service file, or a Subdirectory file. Their location and all other details are not
needed by the user; he simply selects what he wishes from the menus.

The whole Information Server process is driven by standard ASCII text files. Lines that begin with a tilde
(I-‘) are control lines. All other lines are simply text. These files can be uploaded from the BBS prompt, or
can be automatically uploaded using a Request Server like the TNOS REQSVR.

TNOS supports three Information Servers, which all act alike, but have different aliases, directory
structures and Service files. The three standard TNOS Information Servers are INFO, NEWS, and
TUTOR. INFO is used for informational content; network access frequencies, BBSs available, etc.
NEWS is reserved for Amateur Radio related news. The TUTOR Server is generally used for more
interactive Service files. Samples include surveys, tutorials, databases, and much more.

This rest of this paper will (hopefully) serve to wet your appetite and also to document the file format used
by the TNOS Information Server until better documentation is available.

30

NECESSARY COMPONENTS

There are only two necessary components of a file that is used as either a Subdirectory File or a Service
File for the TNOS Information Server, a File Name and a Title Line.

FILE NAME:
We all can probably agree that one of the worst “features” of MS-DOS is the size limitation of filenames;
8 character name with 3 character extension. This leads to VERY CRYPTIC filenames, at best. One
definite design decision of the Information Server was to NOT inflict upon th.e user the responsibility of
having to make sense out of MS-DOS file names. With the Information Server, you can use whatever
filename you want. The file MUST have a “.tut” file extension, though.

Should you use descriptive filenames? Who cares! The user never sees thern, they see the description
from the file’s title line, and a number that they use to choose the Service File.

Each file must be in the proper directory for the server desired. These are (by default) “spool/INFO”,
“spool/NEWS”, and “spool/TUTOR”.

Those fumiliar with NOS will note thut the NEWS directory is used in all other variations of NOS
for the NNTP directory. TNOS names the NNTP directory “NNEWS” by default.

TITLE LINE:
The first non-blank line of the Service File is special! It serves to provide the Information server with the
description of this particular item. The title line can also allow you to nest into sub-directories easily. This
allows sub-menus very painlessly.

The title line can start with preceeding spaces or tabs (they are ignored). This allows you to center the line,
since this is the first line displayed to the user when the Service File is executed. The rest of the title line
will be displayed as the file’s description in the Information Se,rver menu.

If the title line starts with a tilde (-), it expects a line of this format:

- subdir description

The ‘subdir’ is the name of a sub-directory within that directory. This allows ‘you. to define one-line files.
that make nested sub-menus.

Table 1 lists the many filenames in an Information Server directory and their titlLe lines. Figure 1 shows
how the user sees this information.

*...‘. . . ,,<+ .y... ., au, * . . . ,..x+* .~e.h+.,.)~<~., ,..- <a \.,. c-.< .*. \.. ~ r .I ,.., ,A.. .^ ‘I\. * I / .,.\. \ ~ I^.\ ^, \~ ~. .\ .v I
I Filename

_ .,x.,x “‘..; ,M,*. .\ /.T,t,e Line
3I tpalan.tut - tpalan Information on the Tampa Local Area Network
> tri-link.tut - trilink information on the <TRI-LINK>>

hamfests.tut - hamfests ARRL HAMFEST and CONVENTION CALENDAR
rose.tut - rose General Information on the ROSE Network

Table 1 - Filenames and their Title Lines

31

E x i t I n f o r m a t i o n C e n t e r
I n f o r m a t i o n o n t h e Tc~mpa L o c a l A r e a N e t w o r k
I n f o r m a t i o n o n t h e (TRI-LINK>
ARRL HAMFEST a n d C O N V E N T I O N CALENDRR

- Genera l In fo rmat ion on thEs ROSE Network

, , : , I t , . , , . , , II < , . ,) . , . < , x a > 1, > 8 I \ 1 : , I t < > <‘. T I ? > c a, 7 ?‘> x’(xs’.‘.\LI . . \ *.. .1 % .1 <).‘,.< , 1 (, (:. . :) ,
Figure 1 - Information kerver Menu

ANATOMY OF A SCRIPT FILE

The Tilde character (“J’) is treated specially at all time. All lines that do NOT begin with the tilde “-”
character are simply sent to the user after a few simple substitutions. All substitutions begin with the tilde
character and serve as shortcuts for variable data fields. The special control sequences in text lines are:

y.-e-w~--*--.--.~.-- >~xe.m...d..~ “m .eB%.+T.bP..z..’ k, .x. a A>,’ ‘,%.).,>rUI.U (.. .,.., -I _I__ .,.I.y,.\,’ *A* _... *.>,...w.
,

3

-c replaced by the user’s callsign

f
-h replaced by the name of the host computer
-d replaced by the current date

Bf -t
1

replaced by the current time

f
- 0 replaced by variable string 0

i -1 replaced by variable string 13
i -

2 replaced by variable string 2
- 3 replaced by variable string 3p: - 4

1 -5
replaced by variable string 4

; replaced by variable string 5
- 6 replaced by variable string 6
- 7 replaced by variable string 7

: - 8 replaced by variable string 8
- 9 replaced by variable string 9

..T,r<w.>...Y <,’

-iO
-il
-i2
-i3
-i4
-5
-i6
-i7
-i8
-i9
-b
CICY

-n
4

c- ,,.. x . . I I. ., . . .),.). ,. . . , ., .n .*,, - .,, -3,. .a... .,..r c..r...+> -,x,-a, -..r, .r--.*..~.~~~~~~-~~.,~ .‘.h.>~..~mx.&.z.>,~~W ,

replaced by value of index 0
replaced by value of index 1
replaced by value of index 2 3
replaced by value of index 3
replaced by value of index 4
replaced by value of index 5
replaced by value of index 6
replaced by value of index 7
replaced by value of index 8
replaced by value of index 9
replaced with a bell character
replaced by a single ‘J character
replaced with a newline character
un-terminate current line; remove <CR>

[

s

:. Table 2 - Text Control Sequences_.,.,...,.., ., ~) v.>*. A.. y,,‘..., ._ . . I , .._ ,_ ..A,. .>,,. ..A. , , . . . ii..), : .,.) ,. _,,.Il,.,.rn >,.‘... . ..~ ,.A.. A A. ,,. ..; .,. < ,.~ -0. .,.....,, ‘.,/.**... ..,.., ,

The first four sequences allow you to place the caller’s callsign, host computer name, or the current date or
time into the text data sent to the user.

The next 10 sequences allow you to place a string variable into the text flow. There are 10 variable strings
given for the script writer’s usage. Datafile text, user’s responses, and other data can be stored in variable
strings and displayed with the “-0” through “-9” control sequences.

The next 10 sequences allow you to output a numeric variable. As with string variables, the script writer
has 10 integer variables at his/her disposal, named “40” through “49”.

The next two allow you to place a bell character or a tilde character into the stream. The last two sequences
allow you to imbed a carriage return into a string, or mark a line to ignore its own carriage return at the end
of the text line.

All lines that BEGIN with a ‘w’ are treated as control lines by the Information Server. In all of the
following tables, parameters marked with an astrick (*) can be either a literal number, an index counter
(0-i - -i9), or an variable string (-0 - -9).

-<space>
-CT textline

-b num+
-m

-X

defines a comment line; not printed or acted upon
a control line beginning with L’ is treated as a textline with a ‘L control
sequence at the beginning.
output ‘num’ blank lines.
prompt the user with “---MORE (*y/n)---“. The Server then waits for the
user’s response. If it is anything other than ‘no’ (or In’), the Service File
continues. If it is a ‘n’ response, the script ends. (see note in I-x’)
exit the Service File at this point. (Actually goes to label ‘exit’, if it exists).

Table 3 - Basic Control Lines

The “-<space>” control line allows you to imbed non-displayable, no operation lines that can be used to
help document the script file. The ” wb” control lines allow you to place a fixed number of blanks lines into
the data flow.When the “NJ’ control line is used, the “NM)’ is simply treated as ordinary characters at the
beginning of an ordinary text line.

The more control line (“wm”) asks the user if he/she wants more, and if so continues. If a negative
response is given, the script will do an implicit goto “mg” the label named “exit”. If “exit” doesn’t exist, the
script is complete. You can also exit the script at any time with “wx”.

You can easily take a regular text file, using these few control commands, and make a decent Service File.
You should pace the display so that there is a user interaction or a “more” command for every screenful of
data.

-I label
-g label

-q prompt

-y label

-n label

-v num prompt

define a named label at this point in the Service file, named ‘label’.
goto the label line named ‘label’ and continue with the Server. The named
label can be anywhere in the Service file.
query the user with the string ‘prompt’ and ‘(*y/n)‘. If the user responds with
anything other than ‘no’ (or In’), the query status is set to ‘y’ (yes). This
status is used by the “-y” and ‘I-n” control lines.
if the query status is set to ‘yes’ by a “-q” or ‘I-c” control line, then goto the
label line named ‘label’ and continue with the Server. The named label can
be anywhere in the Sewice file.
if the query status is set to ‘no’ by a “-q” or ‘I-c” control line, then goto the
label line named ‘label’ and continue with the Server. The named label can
be anywhere in the Service file.
send user ‘prompt’ string, get response from user, and assign the response
to variable string ‘num’.

Table 4 - Query and Flow Control Lines

33

you can use labels very much like they are used in the C programming language and assembly language.
A label is any text name that makes sense to you. Spaces are not allows in a label name. A label is defined
with a “4” control line.

YOU can go to any label in a script file with the goto “-g” control line. The label can precede or follow the
got0 line in the script file.

Simple quering can be done with the query “-q” control line. This command puts out a prompt string,
asks for a yes or no reply, and sets the script’s response variable to either ‘y’ or ‘n’. The query variable is
used for conditional gotos in the ‘NY’ and ‘IN n” control lines. These lines will go to the label given if the
query variable matches (‘y’ for the “-y” command, ‘n’ for the “+r” command).

A different query variation exists with the ” +” (variable query) control lines. The prompt is sent to the
user, and their response is placed in the string variable that matches “num”.

-a num str assign variable string ‘num’ with the string ‘str’. ‘str’ can also be any single
special character sequence.

-p to fm s* I* picks out a sub-string of a variable string ‘fm’ and places it in variable string
to’. The sub-string starts at position ‘s (0 is the first position). The sub-
string will be ‘I’ characters long, maximum.

-t num index truncates (chops off) variable string number ‘num’ at position ‘index’ (0 is
the first position).

-c nl n2 [lab] compares two variable strings (nl & n2). This sets query status to ‘y’ if
equal, ‘n’ if not, for use with the “-y” and ” -n” control lines. If the optional
label ‘lab’ is given and the two strings are equal, then goto the label ‘lab’.
The named label can be anywhere in the Service file.

-j nl n2 I* [b] compares first ‘I’ characters of two variable strings (nl & n2). This sets que
status to ‘y’ if equal, ‘n’ if not, for use with the l-y’ and “-n” control lines. f7
the optional label ‘b’ is given and the two strings are equal, then goto the
label ‘b’. The named label can be anywhere in the Service file.

-z var index gets the length of variable string ‘var and places the length in index counter
number ‘index’

-i#=[val*] assign i# the value ‘val’ (or 1, if no ‘val’). The ‘##I is iO-i9. The ‘val’ is either a
constant or a “A#“.

-i#+[val*] add the value ‘val’ (or 1, if no ‘val’) to i#. The ‘#’ is iO-i9. The ‘val’ is either a
constant or a “A#‘.

-i#-[val*] subtract the value ‘val’ (or 1, if no ‘val’) from i#. The ‘#’ is iO-i9. The ‘val’ is
either a constant or a “4”.

-i#?[val*][lab] compare the value ‘val’ (or 1, if no ‘val’) to the value of i#. The I#’ is iO-i9.
This command sets the query status for use with the “-y” and “4 control
lines. If the optional label ‘lab’ is given and the query status is ‘y’, then goto
the label ‘lab’. The named label can be anywhere in the Service file.

Table 5 - Assignment and Comparison Control Lines

You can assign an escape sequence or a literal string into a numbered string variable with the “-a” control
lines. You can place a sub-string of one numbered string variable into a second numbered string variable
with the “-p” control lines. The ” wt” control lines allow you to truncate (clip off) a string variable at a
certain point.

There are two control lines that can be used to compare string variables, “~c” and “~j”. The first “4’
compares the entire string of each, while the ” -j” command compares only the first part of the two strings.
You can get the length of a string variable’s data with the “4’ control lines.

The ‘l-i” control lines handle four different functions with integer variables. The character after the ‘i’ (0
through 9) indicates which numbered integer variable to use. The next character is the character that
determines the function. The ‘=’ assigns a value. The ‘+’ adds to the current value of a variable. The ‘-’

subtracts from the current value. The “!I compares the variable to a set value and sets the query variable
accordingly.

-f [filename]

-0 [filename]

-S
-se
-e [lab]

-w textline

-r num

close any open I/O file and then create a new I/O file named ‘filename’. To
close the current I/O file, give no ‘filename’. The query status is set to ‘y’ if
the file open was successful.
close any open I/O file and then open an old It/O file named ‘filename’. To
close the current I/O file, give no ‘filename’. The query status is set to ‘y’ if
the file open was successful.
seek to beginning of current I/O file.
seek to end of current l/O file.
test for an end-of-file condition on the current I/O file. This command sets
the query status for use with the “-y” and I’- n” control lines. If the optional
label ‘lab’ is given and the I/O file is at the end-of-file, then goto the label
‘lab’. The named label can be anywhere in the Service file.
write the ‘textline’ to the current I/O file. The Same special characters that
apply to Text Lines apply to this ‘textline’, i.e. you can use the same control
sequences.
read the next line in the current I/O file into the variable string number
‘num’.

Table 6 - Data File Control Lines

An I/O datafile can be opened with either the “-f’ or the ” -o” control lines. Both commands close any
open I/O file, and open the desired file. If no filename is given, these commands simply close any
previously opened file. They differ in that the ” -f” creates a NEW file and sets the query variable to ‘n’ if
the file couldn’t be created or already existed. The ” -0” command opens a new file and sets the query
variable to ‘n’ if the file couldn’t be opened or didn’t already exist.

You can seek to the beginning (“4’) or end (“-se”) of the data file. You can c:heck for the end of file with
the ” we” control lines. The query variable gets set to ‘y’ if at the end of the file. If a label is given on the
control line and it IS the end of file, then a “goto” is executed, moving to the label line

You write to an open data file with the ” -w” control lines. The rest of the line is treated the same as regular
text lines, with imbedded control sequences allowed. You read from an open data file with the “-r” control
lines. The next line in the data file is placed into the numbered variable string.

4 filename

-k filename
-d user file

-? option

-! option

ul r kloads sends a text file) named ‘filename’ at this point in the script The
fr e MUS be ONLY ASCII text. Any control lines in the u

P
load file will be

only displa
g

ed. The tutorial will continue, after sending the ile, with the next
line in the ervice file.
kills (deletes) a file.
delivers (mails) to ‘user’. The subject of the message will be the title line of
the current Sewice File. The message is sent from the MAILER-DAEMON.
The content of the mail message will be the contents of the ‘file’. The query
status is set to ‘y’ if the message was successfully queued.
a control line beginning with ‘-+I is treated as a request for information
about ‘option’. The query status is set to ‘y’ (yes) or ‘n’ (no). This status is
used by the “-y” and ‘I-n” control lines.

Options available:
C ANSI color graphics permitted
I Connect was TCP/lP type

a control line beginning with I-!’ is treated as a request to change
information about ‘option’. The status of the option is toggled on/off.

Options available:
C ANSI color graphics permitted

Table 7 - File Utilities Control Lines

35

You can upload a separate text file with the ” -u” control line. There is NO special processing of an
uploaded file, so normal Information Server escape sequences are not examined, substituted, or acted
upon.

You can use the “kill” command (“ok”) to delete files on the host system’s disk. FOR TFIIS REASON,
you should limit only those that you can TRUST to be permitted to add Information Server files on your
system.

You can send the contents of a file in a mail message to a user with the “Ed” control lines.

Information about a user can be examined and set using the “~?” and “~!” control lines. You can use these
to check the user’s desire to use color. If the user came through the TNOS BBS and has ANSI color
graphics mode on in the BBS, the color option will be on. Others will be initially set to off.

The username of the user is ONLY valid on starting a script if the connect was an AX25 connect, NOT a
TCP/IP connect. You can find out if the user connected with IP using the “M? I” control line. If this is
found to be an IP connect, you may wish to ask the user for a usemame and also ask them if they would
like an ANSI display (if your script uses these features).

-+ status

-% colorfile

- @ colorcode

begins or ends a ANSI color block. The ‘status’ parameter is either ‘begin’ or
‘end’. ANSI sequences are “eaten” unless they are permitted for this user.
displays a color file, if ANSI color graphics is permitted for this user. The
query status is set to ‘y’ (yes) or ‘n’ (no) depending on whether or not the
user permits ANSI. This status is used by the ‘l-y” and “4’ control lines.
changes current color set to “colorcode”, if ANSI color graphics is permitted
for this user.

Table 8 - ANSI Color File Control Lines

The Information Server allows you to give users (that desire it) a more colorful display. You can change
the text colorset, imbed ANSI control sequences in the text flow or add pre-saved ANSI color files at a
particular spot in a Service File.

The ‘L*” control lines are used to mark the beginning and end of an imbedded ANSI sequence. The
Information Server will remove KNOWN sequences from the data flow if the user has not selected ANSI
graphics, but this is NOT without flaws. It is suggested that you use conditional looping based on the
user’s color setting (using a “m? C” control line).

A pre-saved color file is inserted into the data stream with the ” 4” control line, but ONLY is displayed if
the user has color set to ON. Otherwise, the file will be skipped.

The current text colorset is changed with the ” -@ ” control lines. The “colorcode” is a two digit,
hexadecimal value that determines the colorset desired. The first digit determines the background color and
the blink attribute. The second digit determines the foreground color and the high intensity attribute. These
color codes are listed in Table 9.

IMPLEMENTATION

While this is already implemented in TNOS, the same code could be easily integrated into other BBSs,
other variants of NOS, or any other possible information provider.

There is a stand-alone application included in the TNOS distribution that allows ANY MS-DOS user to
design/view Information Server files without needing to run TNOS.

36

diu&1st Blink
0 Norma
1 Norma
2 Norma
3 Norma
4 Norma
5 Norma
6
7
a
9
A
B
C
D
E
F

2nd Digit Hi Intensitv
0 Normal
1 Normal
2 Normal
3 Normal
4 Normal
5 Normal

Color
Black
Blue
Green
Cyan
Red
Magenta

Normal
Normal
Blinks FG
Blinks FG
Blinks FG
Blinks FG
Blinks FG
Blinks FG
Blinks FG
Blinks FG

E
F

Normal
Normal
Hi Intensity
Hi Intensity
Hi Intensity
Hi Intensity
Hi Intensity
Hi Intensity
Hi Intensity
Hi Intensity

Table 9 - Color Code Table

Brown
White
Black
Blue
Green
Cyan
Red
Magenta
Brown
White

SAMPLE SCRIPT

What follows is a sample Information Server scriptthat serves no REAL useful purpose, but does test
(and serve as a syntax example) most of the Information Server features.

First Test Tutorial

-1 loop
This is the first test at '-h'.

Now we will test the MORE function....
-b 3

x 3
It's time to test the QUERY function....
-b 2
-q Loop back
-y loop
-b 3
Tired of looping, huh!
One more test of the QUERY function....
-b 2
-q Loop back
-n noloop
-g loop
-1 noloop
-b 3
Really tired of looping, huh!

Time to test variables....
-b 3
-v 1 Enter variable #1 (at least 5 characters)

The variable entered was -l!
-i9=4
-p 6 1 0 -i9
The first four characters were '-6'. -u
-2 1 4

37

The length of the string was G.4.
-t 1 4
The truncated first four characters are '-1'.
Your call sign is -c.
-a 4 This is variable #4
--Variable number 4 is '-4'.

4-v 2 Enter your call sign
-V 3 Enter your call sign again
-b 2
-c 2 3 equal
They were NOT equal-b
-g next
-1 equal
They were equal and they were '-2'.-b
-1 next
-j 2 3 2 nowokay
Even the first two characters didn't match!
-g skipit
-1 nowokay
The first two characters matched!
-1 skipit

1: /newtest
-w Call sign is 14cg - Variable 4 is 'y4a.-n
Writing the following to disk:
'Call sign is '-c' - Variable 4 is 'y4'.'un
-f
-0 /newtest
-r 5
Variable 5 is '-5'.
Rewinding......
-S
-r 6
Variable 6 is '-6'.
-f
-k /newtest
-n xx1
Deleted temp file
-g xx2
-1 xx1
Couldn't delete temp file-b
-1 xx2
-b2
The date is -d.-nThe time is -t.
-m
- now for the index counters test
-b 2
Here is the equivalent code for "for (k=l; k < 10; k++)"
-il=
-1 indexloop
The current value of index1 is -il.
-il?lO
-il+
-n indexloop
-i2=-il
The copied index from index1 to index2 is -i2.

z2
And here is the equivalent code for "for (k=lO; k; k--j *

38

-il=lO
-1 indexloop
The current value of index1 is -il.
Al?1
-II-
-n indexloop
-1 lasttest

. A

-bL

-v 9 Enter in a number from 1 to 4
It was -u
-ig=-9
-i9?1 was1
-i9?2 was2
-i9?3 was3
-i9?4 was4
-1 invalid
not one of the numbers asked for! Your answer was-u
A-930
-n badone
either zero-nor started with a non-digit! -u

-g reloop
-1 badone
-i9! -u

-1 reloop
Try again!-b
-g lasttest

-1 was1
One!
-g through
-1 was2
T w o !
-g through
-1 was3
Three!
-g through
-1 was4
Four!
-1 through
-m
Your current CONFIG.SYS file is....
-u /config.sys
-m
I'll now CONFIG.SYS to you in a mail message
-d -c /config.sys
-n lastoops
Sent successfully!
-g lastout
-1 lastoops
Couldn't send it!
-1 lastout
-b 2
-q Ready to exit
-n loop
-b 3
-1 exit
Goodbye, come back and see us!-b

Listing 1 - A Sample, Illustration File

