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ABSTRACT

This paper studies an image compression scheme
using wavelets for image transmission through bandlim-
ited channels. During encoding, the scheme first trans-
forms the image to a wavelet domain and then
compresses the wavelet representation into an image
code. Conversely, during decoding, the scheme first
decompresses the image code into wavelet representa-
tion and then transforms it back to the original domain.
The wavelet transform is explained from a perspective

of signal representation in L*(R)  space. The transform
is further computed using a pyramidal algorithm. The
compression is possible because (i) the wavelet repre-
sentation has many small values that can be coded using
fewer bits, and (ii) the wavelet basis functions are local-
ized in space and frequency domains such that an error
in the wavelet representation only locally affects the
image in those domains. An experiment has been per-
formed to compress two 256x256  greyscale images on
such a scheme through (i) a transformation using a sim-
ple wavelet called DAUB4, (ii) redundancy removal by
truncation the small-valued wavelet representation, and
(iii) a ZIP compression (based on Shannon-Fano and
Lempel-Ziv-Welch techniques). The results show that
highly truncated wavelet representation (2 90%) still
provides good image quality (PSNR >, 30dB) at less
than 2 bits per pixel (bpp). Severe truncation still pre-
serves general features of the image.

1, INTRoDUC~~N

Image compression is a problem of considerable
importance because it leads to efficient usage of channel
bandwidth and storage during image transmission and
storage, respectively. There are many applications that
require image transmission, such as high-definition tele-
vision (HDTV), videophone, video conferencing, inter-
active slide show, facsimile, and multimedia [AnRA91],
[Kins91],  [Prag92],  [JaJS93].  However, images require
many data bits, making it impossible for real-time trans-
mission through bandlimited channels, such as 48 kbit/s
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and 112 kbit/s integrated services digital network
(ISDN), as well as 9.6 kbit/s voice-grade telephone or
radio channels. Non real-time transmission on such
channels also takes a long time. For example, a
256x256  pixel greyscale still image with 8 bits per pixel
(bpp) requires 65,536 bytes. Transmission of such an
image over the voice-grade line would require at least
54.61 s. Furthermore, one HDTV format needs 60
frames of 1280x720 pixels per second. Using 24 bpp
color pixels, this HDTV format would require a channel
capacity of 1,440 Mbits/s.

Image compression can improve transmission perfor-
mance by reducing the number of bits that must be
transmitted through the channel. As shown in Fig. 1, an
image compressor compactly represents the image prior
to channel encoding. At the receiving end, the demodu-
lation and signal decoding obtain the compressed image,
and an image decompressor converts the compressed
image back to a viewable  image. The transmission now
requires a shorter time because the number of bits that
must be transmitted has been reduced. Image compres-
sion also reduces the storage space requirement for
image storage.

Although there exists several image compression
methods, we still need better ones because current meth-
ods are still inadequate, especially for image transmis-
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sion through bandlimited channels. For example, a
sophisticated joint photograph expert group (JPEG)
method needs 1.6 bpp for 24 bpp color images. This
means that HDTV with 30 frames per second would still
require a 4.423 Mbit/s channel capacity. Low bit rate
compression methods have been relying on lossy type of
compressing data, in which reducing the bit rate has
caused a removal of some image information. Thus,
there is a limit on how far a method can reduce the bit
rate, while keeping information distortion sufficiently
low.

The performance measurement of a compression tech-
nique is based on how successful it is to reduce the bit
rate while maintaining image quality [Kins91].  The
other performance aspects are algorithm complexity and
communication delay [JaJS93].  This paper mainly
focuses on the interplay between the first two aspects:
reducing the bit-rate and maintaining quality.

The wavelet technique (or subband  coding in general)
has been emerging as an important class of image com-
pression, in that it has an efficient representation with
few visible distortions [Kins91],  [Ma1189],  [JaJS93].  It
is more promising than the PEG standard, due to (i) a
match between wavelet processing and the underlying
structure of visual perception model, and (ii) a match
between characters of wavelet analysis and natural
images, i.e., higher frequency tends to have shorter spa-
tial support [JaJS93].  They are also attractive because
wavelet techniques are quite fast and easy to implement.
Furthermore, wavelet techniques can provide special
representation such as multi-resolution encoding
[Ma1189].

This paper shows the potential of using wavelet repre-
sentation for image compression. The wavelet represen-
tation is introduced through a signal representation
theory, and computed though a wavelet transform pair in
Section 2. Section 3 shows a wavelet compression
scheme based on the wavelet transform pair to convert
spatial-domain images to  and  f rom the  wavelet
domain. The scheme then compresses the image in
wavelet domain using a combination of lossless  (no
information loss) or lossy (some minor losses) tech-
niques of data compression. Preliminary experiments
on two 256x256 greyscale images (lena.  img and
camera. img) using a simple wavelet (DAUB4)  and a
simple compression (truncation and ZIP) show the
potential of the scheme. Those images are used because
they are standard and easily obtained by other research-
ers. At 4 bpp, the distortion is almost unnoticeable. At
2 bpp, the distortion is noticeable, but the errors are of
salt and pepper noise type such that a simple filtering
may be able to eliminate them. At highly compressed

images, the details are lost but the general features are
still preserved.

2. WAVELET TRANSFORM OF SIGNALS

The purpose of this section is to construct a discrete
wavelet  transfom  (DWT)  for discrete signal representa-
tion. This construction is explained through a theory of

signal representation in a special space, called L2(R),
which is a space for all signals with bounded energy
(square integrable) [Mall89].  This restriction does not
really affect the application generality because most of
the signals that are of interest to us are in t.hat  space.
Although we use a one-dimensional signal as an exam-
ple, we can extend the results to two-dimensional sig-
nals such as images.

2.1. Signal Representation in L2(R)

In L*(R), a signal x(t) can be represented in various
domains using various sets of basis functions. Let a
domain be spanned by basis functions q+(t),  having
reciprocal signals e,(t), where i E 2 (integer numbers).
The representation of x(t) in this domain is a set of sca-
lars ai [Fran69],  satisfying

ai = (‘9 Oi) (1)

where (e,~)  is an inner product, defined in L*(R) as

(x, e> = lx (t:) c+(t)dt (2)
R

between signals x(t) and e,(t). The x(t) can be recon-
structed back through

x(t) = cai<pi(t)
I

Thus x(t) is a linear combination of q+(t)

It may happen that the basis are not countable. In

(3

other word, we have q@,t)  and e(z,t),  called basis ker-
nel, instead of vi(t) and Cl,(t). In such a continuous case,
the new representation of rc@), which is called U(Z),
becomes

u(2) = x (t) e(7, t)d,f t,Tc R (4)
R

and the reconstruction becomes

x(t) = I u(t)cp(t,Z)d~ (3
R

In many applications, it is desirable to have the same
set for basis and the reciprocal, or equivalently q+(t)  is
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equal to e,(t), because of the difficulties obtaining and
dealing with certain @(t).  In this case, the basis func-
tions are self-reciprocal, or orthogonal. Let the nom of
a signalfit)  be defined as

If the norm of each basis function is one, the basis func-
tions are orthonormal.

There are many basis functions available. In fact,
there is a very large number of them. However, only a
few of them are useful, including wavelets.

2.2. Wavelets  as Basis Functions
As basis functions, wavelets have several special

properties. First, in the frequency domain, a wavelet
can be seen as a special bandpass  signal. A wavelet
operating at a higher frequency has a wider bandwidth.
The bandwidth is proportional to the centre frequency of
the signal. This is useful for short-time signal analysis
because wavelets can provide enough analysis resolu-
tion in both original and frequency domains. Second,
the wavelets in a set of basis functions are scaled (by a
factor a) and translated (by a time-shift parameter b)
versions of a single wavelet prototype w(t) [RiVe91].  In
a mathematical notation, each wavelet is in the form of

(0
1

wa, b
=-

J-
VI

a

where a is the scaling factor and b is the translation
parameter. Thus, the wavelets have self similarity, and
useful in revealing self-similarity aspect of signals. This
also leads to fast algorithms. Third, in contrast with
Fourier representation, there are more than one wavelet
prototypes. In Fourier representation, the prototype is

eiw’ only. Thus the same wavelet tools can be applied to
many different sets of wavelet basis.

The selection of a and b leads to a different class of
wavelet representation. In general, the v&b are not

orthogonal because a and b can be any real, continuous
value. In this case, applying Eq. (2) through (6) is more
difficult because we must find the reciprocal basis for
each wavelet set. However with some restrictions, we
can use those equations as if the wavelets were orthogo-
nal basis functions. The restrictions are that the wavelet
prototype y(t) must be (i) finite energy and (ii) bandpass
(no DC component) @RiVeIll].  In this situation, if we
use Eq (5) and (6), we have a continuous wavelet trans-
form (CWT) that operates on continuous signal using
wavelet basis kernel. Notice that some modification is
needed, because we have two parameters a and b instead
of just one z as in the Eq. (5) and Eq. (6). We then have

U(a,b)  = x(t)Wa bCtIdt t, a, b E R 0?
R

andx(t) = u(a,b)v, b(t)db t,a,bE R (9)9

It is important to notice that by changing the parame-
ter a and b, we can position a wavelet in any location in
the time-frequency plane (phase plane). The parameter
a is a scaling parameter which changes the frequency
positions of the wavelet. A larger a results in a lower
center frequency, smaller bandwidth, and larger time
support of the wavelet However, in a logarithmic fre-
quency scale, different values of a result in different
bandpass  signals of the same bandwidth. Furthermore,
parameter b is a time shift parameter. It changes the
time position of the wavelet.  Thus wavelet analysis
reveals both time and frequency characteristics of the
signal.

2.3. Wavelet  Series
We

ous a
want to use discrete a and b because continu-may

and b lead to redundant representations. One opti-

mal selection is a dyadic sequence of a = 2’ and

b = 2% [Mal189],  resulting in orthogonal wavelets

\vi  k(t) =
my (2-jt - k) (10)9

We can now operate using Eq. (2) and (4). As before,
Eq. (2) and (4) must be modified to use these basis sig-
nals because they have two integer indices, j and k,
instead of one i. This modification results in a wavelet
series representation.

2.4. Discrete Wavelet  ‘bansform
It is natural to extend the wavelet series for represent-

ing discrete signals using countable, discrete basis, that
leads to DWT. Here, a certain selection of wavelet pro-
totype and time-scale parameters leads to orthonormal
wavelets.  Mallat uses multi-resolution signal decompo-
sition [Mall891  to obtain DWT, outlined here. The pre-
vious equations are still useful with slight modifications.
Since we deal with countable basis functions, we use
m (2) and (4 as our basic transform pair, with Eq. (10)
as the source of the basis. Furthermore, for digital sig-
nals, x(t) is represented by x[n],  where n E 2 (integer
numbers).

The DWT can be developed through a multiresolution
signal decomposition. Let us introduce a space Vo

which is a subspace  of L*(R). The signal x(t) lies in this
space. The signal can be decomposed into several sig-
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nals, which later called wavelet decomposition of x(t)
(analogy to Fourier decomposition of a signal into its
frequency components). Conversely, we can use the
decomposed signals to reconstruct rc(t)  without any loss.
The decomposed signals exist in decomposed subspaces
created in a pyramidal structure. To explain this space
structure, we first decompose Vo into two orthogonal
complement spaces called VI and 01 denoted as

Vl cl3 01 = v. (11)

Orthogonal complement means

v,vo, = v()

V1”Ol = (0) (12)

VE Vl’OE 01*(v,o)  = 0

where { 0) is a null set. Second similar decomposition is
from VI into Vz and 02. The decomposition continues

down to Jth decomposition, where VJ-1 is decomposed
into V’ and OJ, where J E 2, J > 0. Thus, for every j,
wherejE 2, Jljl l,andJ>O,  wehave

V.~O. = vi 1
J J - (13)

Mallat shows that there exists v(t) such that ~j k(f)

as defined in Eq. (10) are basis functions of Oj. ’ The

basis functions are orthonormal in both Oj and L”(R)
[Mall89].  Furthermore, Mallat showed that there exists

t) (t) in the space L2(R)  such that

w
are orthonormal basis of Vje

We are now ready to define the DWT. Let x[n] be a
digital signal of limited energy, i.e.,

c l~bl12- (15)
n

(This implies x [n] E 22 (2) ). Let also continuous

orthonormal signals {Vj  ktt)l and9 I$j kCt>l9

( t E R and j, k E 2) span L2(R).  Finally, associate n[n]

with f(t) E L2 (R) according to

(16)

The DWT  of x[n] is then a mapping from Z2 (2) to

l2 ( z2) resukhg  in a set of real numbers ( cj
9

k ,dJ
9

k )

(called wavelet coefficients), according to

06

‘j, k = Mt)p Vj Wa)? ,(t)) z 1 f( t, Wj 9 kCtjdt

--oo

00

dJ, k = (rrt>9 $J (17b)9 k@))  = j- f( t, +J9 ktfjdr

m--o0

as in Eq. (1).
In practice, we restrict x[n] to be of finite length, with

N elements. In this case, J is any integer between 1 and
log2N.  (In this work, we set J to (log$V)-&  thus the
description of DWT in [Pres9la] is directly applicable).
Indexj is called scale, ranging from 1,2, ...9 to J, while k

is 0, 1, . . . . to (2%/)-l.  Although DWT can be defined
for complex signals, we have limited the Eq. (2) and Eq.
(3) to real input and basis signals only.

Orthonormality Of signals ( wj
?

k (t) 1 and ( ~j9
k (t) 1

implies that the inverse DWT gives back x[n] from

{‘j,  K dJ9 k, through

J 2-0V-  1

ftt) = C C ‘j kVj,k(f)  ’

j=l  k=O ’

2-JN- 1

c dJ, k?~, k (t) ;
k = O

(18)

as in Eq (3), and then

‘tInI = CfCt)p 00 n(‘)) (199

2.5. Fast Pyramidal Algorithm for DWT
Given a discrete signal x[n], one can actually compute

the basis inner products in Eq. (17) using a matrix multi-
plication, according to

. .
co, 0

. . .

‘j, k
. . .

dJ, k. -

=

9

v(),Wl l ** w,,,,w 11

. . .
wi k[o] :::

. . . . . . . . .
$J, k LoI l =* +J, k fN- ‘1

A

. . .
x [N- 11 I (20)

Here, the matrix elements are the sampled version of
signals wi k (t) and ~j, k (t),  with each signal becomes a

?
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row of the matrix. If the length of the samples is N, the

matrix is NxN, and the complexity becomes O(N2).
To reduce the DWT complexity, a pyramidal algo-

rithm can be used based on the multiresolution decom-
position explained before. In the space vi, j(t) can be
represented by

00

dj , k  = (rrt)t qj, ktt))  z lftt) $j kOdt (21)9

Since each ~j
9 k (t) is a member of both 5 and Vi 1 ,

while the set of $ I
9

k (t) is an orthonormal basis of

Vj 1 , we can express any ~j
9

k (t) iis

By changing the integration variable in the inner-procl-
uct, it is easy to show that there exists h[n] defined as

(23)

such that

Thus Eq. (20) becomes

@j ktt) = zh[1-2kI$j-l  r<‘>9 9
1

Combining Eq. (21) and Eq. (25), and applying inner-
product properties [Fran69],  we obtain

dj , k  = ch[I-2k]dj 1 l (26)?
1

This relationship is very important, because one can
efficiently compute dj,k from the previous d.J-1,1’

Thus, by defining x[n] as do
9
n, one can iteratively cal-

culate all subsequent dj,k for j = 1, 2, . . . . using Eq. (26).
Observe that Eq. (26) is essentially a filtering process of
dj-l,1 using a non-recursive filter of impulse

responses h[n],  followed by subsampling by two. If we
call this operation as H. Then

d
j, k

= H*dj l ,~Ch[l-2kldj_~  I
(27)

? 9

1

We can arrive with a similar relation for Cj,k, since

vj
?

k (t) k a member Of both wj and vi I , while the

set of ~j 1 k (t)  is an orthonormal basis of Vi 1 .

Using simili  derivation yields

and then, after defining an operator G,

(28)

‘j, k
= Godj 1 ,ICg[l-2k]dj 1 I (2%9 9

I

Both Eqs. (27) and (29) replace Eqs. (17b) and (17a),
respectively.

Thus in this pyramidal algorithm, the DWT becomes a
processing of input signal x[n] through a pyramid of
operators H and G for j = 1 to J. In each stage of j, the
outputs of the operator G are collected as cj,b while the
outputs of the operator H are reapplied as inputs for the
next stage.

Although the above derivation is for the forward
DWT, similar approach can be used to derive ‘upside-
down’ pyramidal algorithm for the inverse of DWT. In
fact, the derivation results in a simple relation between
the lower stage to its next upper stage as follows

dj- 1,l = H*dj
9
k+ G*“i

9
k

where H* and G* are the adjoints of H and G [Daub88].
To show that this algorithm is efficient, consider a

DWT of x[n] having N samples. Suppose that the total
of computational cost of one input sample in a stage is a
constant c. At the first stage, the cost is clearly NC. At
the second stage, there are only N/2 samples to be pro-
cessed due to the subsampling process, resulting in a
cost of NC/~.  Similarly, the third stage requires NC/~.
This process can continue until there is no input avail-
able for the next stage. Thus total complexity is

5 2Nc
(31)

which is proportional to NC instead of N2. We can esti-
mate the c if we know the length of h[n] and g[n]. Sup-
pose the lengths of h[n] and g[n]  are the same, which is
2L, for an L E 2. Then NC must be the number of mul-
tiply-and-accumulate (MAC) processes to complete
both convolutions in Eq. (17) and Eq. (19) for all input
samples at the first stage, which must be equal to 2LN.
Thus, total MAC processes to complete the DWT is

4LN, as opposed to N2. Table 1 shows the complexity
comparison with and without pyramidal algorithm.
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Table 1. Comparison of complexity of DWT and
pyramidal DWT, for N input sample and filters
of length 2L.

nal, the number of representation data is
the number of pixel in the original image.

the same with

3. WAVELET C~OMPRESSION

Algorithm 00
Complexity
N=64,  L=2

1
Basis Inner

Product
N2 4096

Pyramidal
Algorithm

2.6. Daubechies Wavelets
Ingrid Daubechies has derived a class of compactly

supported wavelets that are compatible with Mallat’s
multiresolution analysis and pyramidal algorithm. Forc-
ing the wavelets to be compactly supported while main-
taining the compatibility, she obtained a method of
constructing such wavelets, as well as some properties
[Daub88],  such as

c h[n] = fi

cg [nl = 0 (32)
n

8 Cnl = (-1)nh[2m+1-n] me2

The simplest Daubechies wavelet is the DAUB4, with L
in Table 1 is two. The filter part of H has four impulse
responses h[O],  h[l], h[2], and h[3], with values

WI = 0.4829629 1

WI = 0.8365 163

WI = 0.22414387
(33)

h[3] = -0.12940952

The filter part of G also has impulse responses g[O],
g[l], g[2],  and g[3]  which are related to h[n] according
to Eq. (32). Here, we select m=l, such that h[n] and
g[n] have a similar filter structure (down to tap posi-
tions), simplifying the implementation. This option of
m also results in wavelet and scaling prototypes of the
same supports.

2.7. Extending to Two-Dimensional Signals
A scheme to extend the DAUB4 DWT for two-dimen-

sional signals is similar to that of the Fourier transform.
Here, the computation is in two steps [Pres9  la]. First,
we apply a one-dimensional DWT sequentially on the
columns and replace each column of the image with its
DWT results. Second, we redo the similar transforma-
tion, but now on the rows, resulting in two-dimensional
wavelet representation. Since the transform is orthogo-

3.1. Basic Scheme
Lossless compression works by identifying redundant

data and removing them [Kins9 11. The redundancy may
come from non uniform distribution of data as well as
data correlation. If more compression is still necessary,
the scheme further looks for irrelevant data, converts
them into redundant data, and then removes them. The
compression then becomes lossy because the irrelevant
data cannot be recovered.

The irrelevancy can be defined according to different
criteria, ranging from subjective fidelity criteria to
objective fidelity criteria [CoWi87].  Irrelevant data
may be those with little contribution to the fidelity.
They may also be those containing little information in
the Shannon information theory sense. Clearly, one can
associate a measure on irrelevancy, reflected in a quality
measure.

Compression methods must then concentrate on
redundancy removal and irrelevancy reduction [JaJS93].
Redundancy removal methods include predictors and
transforms, while irrelevancy reduction methods include
quantization and data elimination. They are often com-
bined. For example, quantizlation may take place in the
transform domain and/or predictor error.

In wavelet approach, it is possible to employ both pre-
dictors and transforms. The wavelet transform results
carry both time and frequency samples that may have
sample correlation, thus predictors can be used. Fur-
thermore, the transform itself may have removed the
redundancy and made the irrelevant data more visible in
the wavelet domain. We thus study some of the possi-
bilities through experimentation. Especially, we try to
find parameters that govern the irrelevancy and redun-
dancy.

3.2. Experimental Results
In this experiment, we study the role of the wavelet

coefficient magnitude in governing irrelevancy. We
setup the experiment to study its effect on quality
(related to irrelevancy) as well as bit rate (related to
redundancy). Based on a scheme shown in Fig. 2., the
scheme first takes the DWT of the original image. As
the primary test data, we have selected lena . img. A
less intensive experiment was performed also on cam-
era. img for confirmation (see Fig. 3(a) and Fig. 4(a)).
The inverse DWT can convert the image back from
wavelet domain to the spatial. domain for viewing. We
can then perform various processes on the transformed
data. By observing the processing effects on the quality
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Fig. 2. A compression scheme using wavelets.

as well as the bit rate, we can design a compression
scheme.

To facilitate the quality measurement, a routine com-
putes the peak signal-to-noise ratio (PSNR) according
to (in dB)

2552
PSNR = 10logMSE (34)

The mean square error (MSE) is the average of the
energy of the difference between the original and the

d

reconstructed images. We loosely define good quality
as having a PSNR of greater than 30 dB.

One way to study the magnitude effect is through a
coefficient truncation scheme. Here, we use a truncation
threshold, such that coefficients with absolute values
smaller than the threshold are considered irrelevant, and
converted into zero to become redundant data. Severe
truncation leads to data losses, but resulting in an effi-
cient compression. Thus, we study the loss in PSNR
and subjective quality of the image, while at the same
time observe the reduction in the size of the image code
file

Our observation reveals that the smaller the magnitude
of the coefficients, the more irrelevant the coefficients
are. Increasing the threshold results in more coefficients
being truncated. Figures 3(b) to 3(f) and Table 2 show
the effects of various degrees of truncation to the image
quality. The truncation results in good quality at up to
90% truncation. As shown in Fig. 5, there are only few
coefficients that are responsible for total fidelity. Those
coefficients must have high coefficient values, because
they survive the truncation.

One explanation is that the wavelet transform is an
orthonormal transform following the principles of Eq.
(1) and (3). Such a transform satisfies the Parseval’s

(a). Original (b). 73% truncation (c). 84% truncation

(d). 94% truncation (e). 97% truncation (f). 99% truncation

Fig. 3. Effects of various degrees of truncation on the image quality. See also Table 2.



(a). Original (b). 73% truncation (c). 84% truncation

(d). 93% truncation (e). 97% truncation (f). 99% truncation
- -

Fig. 4. Effects of various degrees of truncation on the image quality. See also Table 3.

Table 2. The PSNR values and bit rates of the images
shown in Fig. 3.

relation which equates both energies in the original and
wavelet domains [Fran69].  Since the wavelet basis is
orthonormal, the greater the magnitude of one coeffi-
cient, the higher its contribution to the energy. Thus
truncating the such coefficients would result in high
MSE values, reducing the PSNR.

For more truncation, the distortion is localized and
looks like salt-and-pepper noise, as shown in Fig.3(b)  to
3(e). This is due to the fact that the coefficients respon-

0 10 20 30 40 50 60 70 80 90 100
% Truncation

Fig. 5. Effects of % of truncation on the image
quality for lena.img.

sible for the constructing the pixels have been elimi-
nated. This also verifies one of wavelet properties of
being localized in both spatial and frequency domain.
Thus quantization error in the wavelet domain does not
translate in distortion distrilbuted all over the image.
Low pass or median filters should be able to reduce the
effects of such a distortion. Severe truncations still pre-
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serve the general looks, as shown in Fig. 3(f). The
images are very distorted, but the general feature is still
observable.

The set of truncated coefficients has an unbalanced
distribution of zeros now such that a lossless  compres-
sion should be able to compress it. We can then use the
ZIP compression to compress the coefficients. As shown
in Fig. 690%  of truncation translates to 2 bpp represen-
tation. The ZIP program was able to identify data repe-
tition in the truncated coefficients, and encoded them
compactly.

“0 10 20 30 40 50 60 70 80 90 100
% Truncation

Fig. 6. Effects of the truncation to ZIP compression for
lena.img.

The same scheme is also used on another image,
camera.  img, with almost similar results. Although
the quality of the reconstructed image is not as good as
that of lena. img, the results show similar trends (see
Fig. 7 and 8). Also, Fig. 4 and Table 3 show similar
effects of the truncation on the image quality.

Table 3. PSNR values and bit rates of images in Fig. 6.

% Truncation PSNR (dB) Bit Rate (bpp)

73 40.18 3.98

8484 31.1031.10 2.82.8

9393 23.2623.26 1.61.6

9797 19.5119.51 0.850.85

9999 17.4617.46 0.390.39

3.3. Compression Performance
We can then use the threshold scheme as a simple

image compression scheme. The compression takes the
forward DWT of the image, truncates the small magni-
tude coefficients according to a threshold, and losslessly
compresses the truncated coefficients to become the

“0 10 20 30 40 50 60 70 80 90 loo
% Truncation

Fig. 7. Effects of % of truncation on the
image quality for camera. img.

-0 10 20 30 40 50 60 70 80 90 100
% Truncation

Fig. 8. Effect of the truncation to ZIP compression
for camera.img.

compressed image. The decompression then starts with
lossless  decompression of the compressed image, and
inverse transforms the results to obtain viewable image.
Figures 9 and 10 show the compression performance
measured for lena.  img and camera.img,  respec-
tively. We observe that in 2 bpp the image still have
good quality.

4. DISCUSSION

Localization characteristic and sparsity of wavelet
representation are interesting features for image com-
pression. The localized property of the wavelet coeffi-
cients reduces the effect of a quantization etror to the
total image. This is an advantage over Fourier represen-
tation. The spar&y means that most of the image
energy is distributed among a few basis functions only.
Thus a scheme that finely quantizes the high coefficients
while coarsely quantizes the small-valued coefficients
leads to efficient compression with high quality.

From a practical perspective, the compression scheme
is interesting due to the simple and fast computation
structure. Since the implementation of the wavelet
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Fig. 9. Quality of the image for different compres-
sion rates for lena . img.
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Fig. 10. Quality of the image for different compres-
sion rates for camera.img.

transform pair consists of filtering only, fast dedicated
hardware is possible.

In this scheme, two aspects are open for improve-
ments: (i) selection of the wavelet prototype, and (ii)
compression of the coefficients. In our experiment, we
selected DAUB4 because of its simplicity, its localized
property, and its immediate availability. Thus, the selec-
tion has not been made through a study of characteris-
tics of different wavelets. A more elaborate choice of
wavelet may lead to much better results. For example,
[Mall891  reports the use of image distribution character-
istics into consideration results in 1.5 bit/pixel, with
only a few noticeable distortions. Furthermore, in our
experiment we apply brute force truncation to eliminate
redundancy. A more thoughtful method should produce
better results. A program which optimally embeds
Huffman coding in the compression scheme results in
3: 1 lossless compression and 50: 1 lossy compression
with some degradation [Pres9  1 b].

We conclude that wavelet coding is an important
method for image compression. Characteristics of the
wavelet representation such as locality and sparsity can

be exploited for compact representation. The magnitude
of a wavelet coefficient determines the coefficient’s sig-
nificance with respect to the image fidelity. This can
lead to very promising compression schemes as demon-
strated in this paper.
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