
DSP-93 Programming Hints

Frank H. Perkins, Jr. WBSIPM (fperkins@onramp.net)

Introduction

The DSP-93 is surprising user-friendly to program, considering it has a 40 MHz Harvard-
architecture DSP processor under the hood. Applications can be successfully developed with
only a PC and an oscilloscope. So far, more than a half dozen radio amateurs have developed
and published applications for the DSP-93, including NSEG’s windows-based oscilloscope
and spectrum analyzer displays, W3HCF’s super-hot HF modem, a collection of satellite and
terrestrial modems by this author, plus Mac versions of the spectrum analyzer and
oscilloscope displays by W5RKN.

In this paper, I offer you several hints on programming the DSP-93 that will hopefully get you
around a couple of rough spots I have encountered. These hints are intended for someone
with a working knowledge of assembly language programming, the 32OC25 instruction set and
the Programming Guide for the DSP-93’.

DMOV, MACD, LTD, etc.

DMOVs and instructions with embedded DMOVs only work in infernal data memory. This is
often a big surprise to programmers that are familiar with the 32OC26 DSK kit, which only has
internal data memory. The DSP-93 can have up to 64K of data memory. However, DMOV,
MACD, LTD, etc. will not work properly in the external RAM segment of this memory. Be sure
you keep your data delay lines for FIR filters, correlators, scramblers, etc. in the internal data
memory segment!

Data to Program Memory Remapping

To support adaptive filters, the 32OC25 can remap data memory at 0200h to 02FFh to
program memory at OFFOOh to OFFFFh. Avoid the temptation to put any tables or code in the
OFFOOh to OFFFFh segment of program memory, as it will disappear if the CNFP instruction is
invoked.

UART Data Transfers

Remember that UART read/writes, which are done with 16 bit IN/OUT instructions to data
memory, are only valid in the lower eight bits. Be sure to mask the upper eight bits to zero.

AND, ANDK, OR, ORK, XOR, XORK

ANDK, ORK, and XORK support mask shifting into the high word of the accumulator; AND,
OR and XOR do not. AND zeros the high word of the accumulator. ANDK zeros all bits above
and below the shifted mask and always zeros the MSB of the high word, regardless of the

97



shift. OR and XOR do not affect the high word of the accumulator. ORK and XORK do not
affect bits above or below the shifted mask and do not affect the MSB of the accumulator,
regardless of the shift. The somewhat subtle differences in high word treatment between
memory addressable and immediate versions of these logical instructions can be confusing,
especially if sign extension is set.

Nonlinear Operations

Nonlinear operations can be bandlimited or not bandlimited. Due to alias residues, nonlinear
operations that are not bandlimited can create some real surprises. For example, in my first
attempt at an APT demodulator 1 used the ABS operation to do a full-wave rectification of the
2400 Hz amplitude-modulated carrier signal, followed by a low-pass FIR filter. Bad idea. I had
a IO-15% “hum” signal in the demodulated output.

After hours of circuit troubleshooting looking for the source of the hum, I started to realize I
had created it in the DSP math. I did a simulation of the APT demodulator in QuickBasic and
the hum was there! The problem was that taking the absolute value of a sampled analog
signal was not a band-limited operation, and had created many, many harmonics. One of
harmonics landed just above or below the sampling frequency and was aliased right into the
passband of the low-pass filter. When I squared the signal to detect it, the problem went
away. Squaring a signal is a band-limited nonlinear process, and only creates a second
harmonic. If your sampling rate is at least four times the highest frequency in the incoming
signal, alias residues will not be a problem for square-law detection or product detection,
which are both band-limited nonlinear processes that create only second harmonic
components.

Clipping, half-wave and full-wave rectification are examples of nonlinear operations that are
not bandlimited. These operations can be used under certain circumstances, but be sure to do
an alias-residue study before using them.

Analog and Digital SW Probes

My basic code debugging tools are analog and digital software probes. I try to dedicate
pointer AR7 for the analog signal probe:

; Initialize the probe pointer in your initialization routine as follows.

PNTR-INI LRLK AR7,07Eh ; point AR7 to 07Eh (unused location)

; Then place the following code just below an operation you want to check,
; and reassemble. This code will load the target variable, shifted as needed for
; scaling, into the probe buffer.

PROBE LARP
LAC
SACL

AR7
= W
*

; make AR7 pointer
; get variable, shift to scale
; store @ probe

98



; Then use this code near the end of the DSP routine to output the probe
; buffer to the D/A converter, where it can be viewed with an oscilloscope.

AI0 OUT LDPK OOh- ; data mem page 0
LARP AR7 ; make AR7 pointer
LAC * ; get probe
ANDK OFFFCh ; mask out AI0 control bits
SACL DXR ; AI0 out

For a digital probe, I move this code just below the logic operation I want to check:

; load the buffer containing the target bit and mask it off

TST-LGC LAC
ANDK

; get buffer containing bit to output
; mask off bit

BZ BIT-LO ; if bit = 0 goto BIT-LO

BIT-HI LAC
ORK
SACL

DO
04000h
DO

; else load DO
; OR RDI bit to 1
; store DO

B LGCTOUT ; goto LGC-OUT

BIT-LO LAC
ANDK
SACL

DO
OBFFFh
DO

; else load DO
; AND RDI bit to 0
; store DO

LGC-OUT OUT DO,O6h ; output to TNC port RDI bit

In this case, the probed data bit appears on the RDI output line of the DSP-93 modem
disconnect header. On my unit, this line is very easy to reach with an oscilloscope probe. I
often compare two logic signals by putting the second signal on the RCLKI output line.

AI0 Low-Pass Filter Programming

The sampling rate Fs of the 32044 AI0 chip in the DSP-93 is given as:

Fs = 5000 / (Ta * Tb), in kHz

However, the low-pass input and output filters in the AI0 are programmed by
the value of Ta only. The cut-off frequency Fc for these filters is approximately:

Fc = 60 / Ta, in kHz



Take the case of an 8.681 kHz sampling frequency. Ta * Tb = 576. Assuming we want a 2.5
kHz cut-off frequency:

T a = 6 0 / 2 . 5 = 2 4 , a n d T b = 2 4

Had we chosen Ta = 12 and Tb = 48 to achieve the same sampling rate, Fc would now be
5 kHz, and input signal aliasing and poor output signal reconstruction could be problems. In
picking Ta and Tb values, expect to do some juggling between the sampling rate and the cut-
off frequency of the low-pass filters. Remember, for linear signal processing you want Fc less
than 50% of Fs and for band-limited nonlinear processing (second-harmonic generation only)
you want Fc less than 25% of Fs.

References

1. Parsons, D Haselwood, B. Stricklin, Programming Guide for the DSP-93, TAPR,
http:lfwww. tapr.orgltaprIhtmlldsp93. html, 1995.

2. TMS320C2x User’s Guide, Texas Instruments, 1993.

100


