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Abstract

Recent enhancements to the Microsoft Excel' spreadsheet program, version 5.0, provide
some interesting features that may be of interest to those designing or analyzing data
modems. This paper looks at the following examples: 1) bit error rate of a modem vs. Eb/No
in additive white gaussian noise (AWGN), 2) phase-locked loop response vs. loop filter
parameters, and 3) modem eye patterns vs. channel response, and shows how each can be

modeled with Excel.
Bit error rate in AWGN

To determine the theoretical bit error rate of a modem utilizing a certain modulation, it is
necessary to know how often the noise voltage will exceed the signal voltage, given that the
signal level (Eb), and the noise spectral density (No) is known. A common way to analyze this
is to plot the bit error rate versus the Eb/No. In order to do this, an assumption about the
statistical noise properties must be made. One assumption that is easy to model is that of
additive white gaussian noise (AWGN) that has a uniform power spectral density (PSD) and a
gaussian amplitude distribution. For an AWGN signal with zero-mean (no DC offset) and an
R.M.S. voltage of 1 volt, the equation that expresses the probability density P(x) versus the
voltage, X, is given by:

eXP[— 1—} (1)

P(x) = >

1
Ton

Then, the probability that the voltage x exceeds some value is the cumulative probability
density of x versus the voltage. The probability that an error voltage will exceed the signal
voltage is thus the cumulative density that the noise voltage is of the opposite magnitude and
equal to or greater than the signal voltage. Assume that the signal voltage is n, then the
probability of an error, versus the signal voltage, n is:

Error(x) = }O—J—zl_; exp {—— %Z—}dx 2)
n

' Excel, Excel 5.0, and VBA are trademarks of Microsoft, Inc.
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This equation is interpreted below, which shows the probability density of x (gaussian noise
vloltage) and the shaded part of the curve shows the cumulative probability of the noise from
+1.5 to + infinity.
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To plot the probability of the signal, n, being less than the noise voltage requires calculating
the value of P(x) in equation 2 for all values of n. This is a tedious task, since equation 2 does
not have an explicit solution. However, Excel 5,0 provides a function, called ERFC that
provides the above probability. ERFCO is defined so that:

Error(x) = %ERFC (i) (3)

v2

Now, to plot the theoretical bit error rate (BER) of a signal vs. the Eb/No, all that is required is
to plot Error(x) vs. x. The value x is generated as a ratio, and convenient decibel ratios are
chosen for display (0 dB, 0.5 dB, 1 dB, etc.). This is plotted below, and is the theoretical BER
vs. Eb/No (the value of x) for coherently-demodulated 2PSK modulation.
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BER vs. SNR for AWGN
2-level baseband signal, amplitude = +1 and -1
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Different modulation formats can be compared by substituting into equation 3 the different
formulas expressing x, the signal voltage.

Phase-locked loop (PLL) modeling

A simple phase locked loop consists of several components: a phase detector, a loop filter,
and a voltage-controlled oscillator. In order to analyze the loop performance, it is necessary to
express the phase detector gain, the loop filter gain, frequency, and phase response, and the
VCO response. In general, the loop filter and the VCO response are complex (that is, they
contain real and imaginary parts) and thus the equations must be computed using complex
algebra. Two expressions of interest in the PLL design are the open-loop response, and the
closed-loop response. The closed-loop response of a PLL is given by:

G(s)K,K;
H poeea(8) = —— 7 (4)
s+G(5)K, K,

Where G(s) is the response of the loop filter, s is the Laplace variable (equal to jw for
sinusoidal analysis), Kv is the VCO control voltage gain, and Kf is the phase detector gain.
Similarly, the open-loop response is given by:

Hop(5) = 0L ®)

To plot the magnitude and phase of H(s) versus the frequency, the use of complex algebra is

required. Excel 5.0 supports complex numbers, and operators to add, subtract, multiply,
divide, and to find the magnitude and phase of a complex number. These operations are not
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always as convenient as manipulating real numbers in Excel, so several steps are required in
the computation. First, an array of numbers is set up as the frequency, f. Then the value of s
is computed. s is equal to jw, or j2nf. jis equal to the square-root of negative one (an
imaginary number). In Excel, s is equal to =COMPLEX(0,2*PI()*B9) where B9 happens to be
the cell containing the frequency in radians per second (for this example). Thus, the real part
is zero, and the imaginary part is 2*PI*f, and s obviously is j*2*PI*f. G(s), the loop-filter
frequency response can be computed, and in the particular spread-sheet, each column is a
different frequency, and each row is a partial product, such as s, G(s), and finally H(s). Then
the magnitude and phase of H(s) are computed as additional rows, which can then be plotted
versus frequency. The diagram below shows the closed-loop response of one such
computation, a PLL with a simple low-pass loop filter. It can ke seen that the loop response is
very poorly damped, and the loop is near instability, with a gain peak near 9 hertz.

PLL closed loop response
with single pole RC filter
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The open-loop response of this PLL is computed almost identically, and is shown below.

Open-loop response of PLL
with simple low-pass filter
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From the open-loop response it can be seen that the amplitude curve crosses zero-dB. at 9
hertz, and that the loop has about 6-degrees of phase margin, clearly an invitation to disaster
with this loop. Fortunately, it is easy to make more complex lead-lag filters for the loop-filter,
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G(s), and perform any additional calculations in Excel. It is also easy to make the pole
frequencies of G(s) adjustable, so they can be altered, and the PLL response plotted
accordingly. The diagram below shows the closed-loop response of a PLL with a lead-lag loop
filter. This PLL is much more likely to operate properly.

PLL closed-loop response
with lead-lag lowpass filter
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Eye pattern versus modem channel response

A more complicated example, but one which shows the power of Excel is to compute the eye
pattern that would be seen at a receiver given knowledge of the frequency and phase
response of the channel. We'll assume a real frequency response, but this is not necessary (it
does make this example less difficult). The key to this is provided by two features of Excel:
the ability to compute the Inverse Fast Fourier Transform (IFFT), and the ability to write
functions in Visual Basic Application (VBA) language that comes embedded within Excel 5.0.
A function that is needed is the Multiply-Accumulate operation, which forms the kernel of
convolution and correlation integrals.

Given the frequency and phase response of the channel, the impulse response of the channel
is given by the Inverse Discrete Fourier Transform (IDFT) or the IFFT of the channel
frequency response. If the frequency response has no phase variation, then the impulse
response will contain only a real component. Once the impulse response is known, the time-
domain response of the channel to a data signal can be computed by linear convolution of the
data bits with the impulse response. The convolution function is given by:

J(0) - [hE)(-T)dr ©

Where y(t) is the output of the convolution, h(t) is the channel impulse response, and x(t) is the
input signal to the channel. It can be recognized that when converted to discrete-time, this is
just exactly the equation of a finite-impulse-response (FIR) digital filter (in fact, this is how the
FIR filter is derived). The Multiply-Accumulate operation performs the multiplication of h and x
for all values of tau, and sums them. This operation is then repeated for the next value of 1.
Thus, an array of Multiply-Accumulate (MAC) functions can perform a linear convolution (or
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FIR filtering) of the signal. The MAC function written operates just like a built-in Excel function,
and it can be copied and pasted in ranges.

To generate the eye pattern, a filter with a suitable frequency response is chosen. This is
converted into an array of frequency versus amplitude. This example uses a raised-cosine
filter with an alpha factor of 0.4. Then the Inverse FFT is computed on the response and the
resultant output circularly-shifted to produce the real impulse response. Next, a pseudo-
random bit sequence is generated by writing another VBA function. This bit stream is stored
in an array of cells. Then the channel impulse response is convolved with the pseudo-random
bit stream, and the resultant time-domain signature of the ringing filter is produced as an
array. Finally, many pieces of this time signal, each 3-bit times long, and each offset by one
bit time are generated as a 2-dimensional matrix. All of the signals in the matrix are then
plotted on top of one another, resulting in an eye diagram.

The diagram below show the frequency response of the channel for an alpha=0.4 sinc-
compensated channel filter.

Frequency response of raised-cosine + sinc-compensated
channel
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The impulse response of this channel is the computed using the IFFT, and the impulse
response is shown below.
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Impulse response of alpha=0.4 sine-compensated channel
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Note that the zero-crossings of the sine-compensated impulse response do not cross through
zero at the bit time (an uncompensated raised-cosine impulse response does cross through
exactly zero at the bit time) Next, the convolution of the pseudo-random bit stream with the
impulse response results in the time-domain waveform from the filter, shown below.
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Time-domain response of x/xin(x) compensated raised-

cosine filter
alpha = 0.4, sequence = 2’3 - 1 PRBS

One division equals one bit time

And finally, the resultant eye-pattern from the above time-domain waveform is shown.

Eye Pattern - Raised cosine + x/sin(x) compensation
alpha = 0.4, sequence = 2'3 - 1 PRBS

17-tap FIR filter equiwlent
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Summary
It is possible to graphically solve many interesting problems in the design and analysis of data

communications systems using spreadsheets. Three examples have been presented which
illustrate the utility of this method.
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