
1-Wire APRS Weather Station
 

William Beals N0XGA 
15014 East Idaho Place 
Aurora, CO 80012 
will@beals5.com 

Russell Chadwick KB0TVJ 
4371 North 63rd Street 
Boulder, CO 80301 
russ@wxqa.com 

Abstract 

This project and resulting TAPR kit implement the necessary hardware and software to sense and 
display data from various low-cost I-Wire weather sensors. With the addition of a TNC and 
radio, it forms a complete, stand-alone APRS-compatible weather station. Weather information 
is also available on a 4-line by 20-character LCD. The project is designed to be easily extensible 
and upgradeable--even for applications that are not weather related. 

KeyWords 

One-Wire, I-Wire, APRS, Weather, Peet, Dallas Semiconductor, Motorola, LCD, temperature, 
wind direction, wind speed, humidity. 

Introduction 

After much research, the authors came to the conclusion that there wasn't quite the "perfect" 
weather station intended for stand-alone APRS use. Our definition of "perfect" had the 
following requirements. 1) Affordable 2) Reproducible 3) Expandable 4) Accurate 5) No 
computer required 6) Low power and single supply, and 7) APRS compatible. Multiple 
consumer-grade weather stations exist, but in order to get on the APRS airwaves required either 
a dedicated computer or special "logging software" to transmit a non-APRS format. We had no 
convenient "buy it" option available. We considered several reputable projects where sensors 
were made out of household parts, but they relied on surplus parts that failed our second 
criterion, reproducibility. About that time, Dallas Semiconductor introduced a line of sensors 
called I-Wire devices that required only two wires (marketing folk don't count ground I guess). 
To promote these parts they introduced a wind/temperature sensor based on these chips. With a 
decent and affordable sensor in hand, a micro chosen, and some welcome TAPR support, the 
project was born. 

Project History 

The project started on a 6805 microcontroller. Based on personal preference, all of the source 
code was written from the ground up, starting with and referring to little else beyond the Dallas 
chip specifications. The only times I "cheated" and looked at other code was referencing some C 

1 



code for the CRC checkers. This clearly had drawbacks in that I had to learn several basic 
lessons the hard way, however by starting from scratch, I had significant flexibility in the overall 
code architecture and chose one best suited for this project. 

During the early project evolution, several major changes took place. The micro was upgraded 
to a Motorola 6808, the external serial EEPROM functionality was incorporated into the 6808 
internal flash, and we even changed revisions ofthe 6808, from a 20Kbyte part to a 32Kbyte 
part. At that point the printed circuit board was created, so only software changes were allowed. 

Even after the hardware platform became fixed, several significant features were added and 
upgraded. Most notable were adding a software downloader, overhauling the code for purely 
interrupt-driven data gathering, and the adding of several weather sensors as well as a time 
reference. All these upgrades have been available free to anyone who purchased the weather 
station or constructed it from scratch. Starting fairly early, the full source code has also been 
available for download as well. 

The Hardware 

The 6808 requires very little in the way of external support components for normal operation. 
These include a 5V regulator, crystal oscillator (not really required), the one-wire interface, and 
the UART buffers. Additional circuitry is included for program debug, this includes an extra 
crystal oscillator, additional UART interface, and a slightly unusual reset circuit. 

The need to put the debug circuitry on every "production" board was heavily debated during the 
board design phase. This is a very general purpose board and we expect projects other than the 
weather station to be possible with this hardware platform. To support this, it made sense to 
enable as many people as possible to be developers. 

Weather Data 

During the initial stages of the project, the official APRS data formats were in the final stages of 
getting defined by the APRS working group. The final version I used was version 1.01. The only 
area were the station is in a gray zone is in the definition of the station type. The station 
identifier field calls out a one-letter software type followed by a multi-character weather unit 
type. For the software type, the specification defined six categories of equipment based mostly 
on the operating system: Windows, DOS, Mac, and Linux. A unique letter identifies each of 
these categories. Unfortunately, the weather station fit none of these categories. I arbitrarily 
chose a seventh identifier letter "e" for Embedded or Experimental as it was an unused letter. 
The weather unit type characters do not need to follow any format, so I chose "1 w" for one-wire. 
Hence the station identifier is "e1w". 

Both positioned and positionless weather data formats are supported. If the user specifies their 
coordinates in a setup screen the positioned format is chosen. 

Data transmitted by the weather station clearly depends on the sensors installed. Sensors 
currently supported are wind speed, wind direction, temperature, rain, and humidity. In addition 
to the basic weather data from those sensors, calculated data such as dewpoint is displayed but 

2 



not transmitted. For rain, the intervals reported on APRS are rain last hour andsince midnight. 
In addition, rain for month-to-date, and "since-user-reset" are displayed on the LCD. Wind 
speed is measured every 5 seconds. Average wind speed over 5 minutes is reported for each 
APRS packet along with the peak gust measured over the 5-second sampling time. 

Daily stats are also displayed for the current as well as previous day. This includes high 
temperature, low temperature, peak gust, and rainfall. 

This is only the current sampling of weather data gathered and reported. This project by its 
nature is easily expandable. The most noticeably absent sensor is barometric pressure. The 
authors are waiting for a suitable mass producible sensor to be available before adding the 
support for it. There is a decent chance such a sensor will be available before this article gets 
published. 

PeetMode 

In addition to APRS-formatted data, a mode exists to send data out of the unit using Peet format. 
There was a specific user request to support some existing equipment that understood only Peet 
formatted data. When in this mode, only raw (unaveraged) data is sent every five seconds. 

Reporting accurate weather data 

For a project such as this, being able to get, process and present the data is only half the battle. 
The other half of the battle is to do so as accurately as possible. Russ brought his expertise in 
this area, providing the most accurate algorithms possible and practical for this project. Weather 
data is inherently very "noisy" data. To sample this raw data every five minutes and broadcast 
that one sample does not give a good representation of the current weather conditions. 
Additionally, simple averaging is not practical, especially for information such as wind direction. 

Download Monitor 

Early in the project the main processor was changed from a UV-erasable EPROM-based 6805 
micro to a Flash EEPROM-based 6808 micro. Once the main micro became flash-based, that 
brought the possibility of allowing users to upgrade their code without having to remove the 
micro from the main board. It would further allow this upgrade without needing the full 
debugger toolset. This quickly became a critical feature of the design and has proven to be a 
great asset during the projects lifetime, allowing users to easily upgrade to newer versions of the 
software without requiring anything more than a PC and a simple DOS-based program. 

The Flash memory inside the micro is divided into three regions. The first is the boot area. This 
is never altered during normal operations. The second is the user-data area. This area stores user 
data and preferences. It is preserved during code updates. The final area is the application area. 
This is the area that is erased and update during a code update. 

The boot area resides in the boot vector space of the flash and assumes control after reset. It 
occupies 2K of the flash space. After reset, this code checks to see if the up and down buttons 
are being pressed simultaneously. Ifnot, the boot controller passes control to the application 
area. If both buttons are pressed, the boot loader initializes the display and presents a message 

3 



saying it is ready for a download. It then sends out a query character, waiting for the PC to start 
a download. As soon as this character is recognized and acknowledged, the boot loader erases 
the application area and requests new application code from the PC until the new application is 
loaded. 

The user data area is where sensor IDs are stored as well as any other permanent information 
such as position string, UTC offset, etc. It is also approximately 2K in size. A significant 
advantage of the user-download feature is that this data is NOT erased when new application is 
loaded, hence preserving any previous settings. The development tools can only erase the entire 
flash including the user settings. A default of Oxff is required for any unused data, allowing a 
known value to be present for any new variables that become defined with a new software 
download. 

The application area is the remainder of Flash, approximately 28K in size. This area is not 
divided any further, if there is a code update, this entire area is erased and reprogrammed. Since 
inception, there have been nearly 30 releases to both introduce significant new features as well as 
fix numerous coding bugs. 

An Upgradeable Project 

As evidence of the usefulness of the upgrades, the initial release of the weather station only 
included basic monitoring of wind direction, speed, and temperature. During the nearly thirty 
releases, the following features were added either as pure software enhancements, or additional 
sensor support for which the sensor just needed to be added to the I-wire network. 

Computer (non-averaged) data mode 
Updated calibration constants for wind speed 
Added error counters screen 
Made all data gathering routines interrupt-driven 
Wind direction optionally, N, NW, vs. just degrees 
Added today/yesterday stats screen 
Added Peet mode support 
Added rain gauge support 
Added support for better DS 18S20 temp sensor 
Added support for TNCs with LTP command 
Added positioned weather format 
Added metric display screens 
Added support for DS 1994 real-time clock 
Added full baud rate support in all modes 
Added bus voltage monitoring (great for debug!) 
Added support for humidity sensor 
Added support for new AAG wind/temp sensor 
Added ability to "remove" a sensor 
Added external radio power control (external HW required) 
Added battery voltage monitoring (external HW required) 
Added dewpoint option vs. humidity only 

4 



This list only includes new features, not the numerous bugs that were discovered while adding 
these features. Also, in many cases the features were requests from users who purchased the 
weather sensor and placed requests for additional features after using the unit for a while. 

Single-supply design 

(A small digression here) A significant drawback with PC-based weather stations in this authors 
opinion is power consumption. Assuming an average PC draws approximately 200 watts (even 
more if the monitor is on), power consumption alone adds up to a tangible impact to the 
electricity bill. If you are curious, multiply 146.4 (the number of kilowatt hours in a month of 
24/7 usage at 200 watts) times your local utilities cost per kilowatt hour. For our local utility, 
this adds up to about 11 dollars a month! Naturally, your numbers may vary-especially if your 
24/7 computer is a laptop or some other watt-miserly machine. This ongoing cost was a major 
reason for wanting to expend the effort for an embedded weather station instead ofjust using one 
of the many excellent PC-based solutions that were available at the time. 

Fully configured with a standard setup and some margin, the weather station draws a maximum 
of four watts (12V at 300ma or 22 cents per month). Almost half this power is for the LCD 
backlight, so if you leave it off, power is even further reduced. This is sufficient for any 
domestic use. The choice to use a 12V supply even though only 5V is needed is that this is 
already a very common power voltage in almost any ham shack. Also, for a remote situation 
12V is also a very common DC supply. 

During the design we debated over the type ofregulator to use to get the 5V supply from the 12 
rail. The quick and dirty linear regulator was certainly the easiest and cheapest. For a remote 
location that might be solar powered, a switching regulator would clearly have made more sense. 
We ended up choosing the cheaper solution that wasted some power in recognition that most of 
the station would be AC-powered. For anyone running from solar power, they could make the 
choice to use the existing linear or install a switching regulator in the patch area. 

Future Work 

The only major sensor still missing is barometric pressure. This sensor has proven to be 
somewhat problematic to make cheaply and accurate at the same time. The author also really 
wanted to support a sensor that was produced by either Dallas Semi or AAG, but neither 
company has offered one as of this writing. A design from the amateur (not just radio) 
community is gathering momentum and support for this sensor may exist about the time of this 
papers publication. 

Other future work includes using more of the DS 1994 features besides the real-time clock. The 
part also has a 4Kbit non-volatile memory. It would be nice to log daily statistics to that memory 
in a format that would be readable by any PC running Dallas Semiconductors TMEX file system. 
This would allow logging up to approximately one month of data and then be able to transfer 
these logs to a PC in a very convenient manner. 

There is also nothing required other than programming time to be able to support parsing of
 
incoming APRS data and displaying it on the screen. The numerous formats, exceptions, and
 

5 



variations of incoming data would be a formidable chore and so far continues to be avoided by 
the author. 

Finally, one of the original intents of the hardware design was to be a general-purpose board for 
projects besides weather stations. So far no other projects have materialized. Hopefully some 
day this will happen. 

Conclusion 

It is a rare opportunity in the hobbyist community to not only want to work on a project but also 
find a group of people and an association that is willing to help you in that process. This weather 
station is such a project. It would be dangerous to try to mention the numerous folk that helped 
with this project either directly in material ways or the hundreds of emails on the weather 
reflector. TAPR clearly deserves thanks as it provided the forum for all of the helpful people to 
work through. 

References 

Ian Wade, Editor. (2000) APRS Protocol Reference. The APRS Working Group 

Dallas Semiconductor. DS 18S20 High Precision I-Wire Digital Thermometer 
Dallas Semiconductor. DS1994 4Kbit Plus Time Memory iButton 
Dallas Semiconductor. DS2401 Silicon Serial Number 
Dallas Semiconductor. DS2407 Dual Addressable Switch Plus lK-Bit Memory 
Dallas Semiconductor. DS2422IDS2423 lK14K-Bit I-Wire RAM with Counters 
Dallas Semiconductor. DS2438 Smart Battery Monitor 
Dallas Semiconductor. DS2450 1-WireTM Quad AID Converter 

6 


