
DttSP: An SDR Core in C 

Frank Brickle, AB2KT
 
Bob McGwier, N4HY
 

Last year at this conference we presented an overview (AMSAT OSCAR Echo, SDR-1000, and Higher
speedFSK, by Frank Brickle, AB2KT and Bob McGwier, N4HY) of the design for a suite of software to 
implement a Software Defined Radio initially for the FlexRadio SDR-IOOO. We described the functional 
breakdown of the software and the overriding design goals and principles that were to guide the 
development. 

The first iteration of that software is complete. It is currently embedded in the new SDR-IOOO console 
running under Windows. However, the DSP core is independent of the Windows version - indeed, it is 
basically independent of the SDR-IOOO hardware as well. We are currently completing the parallel 
Linux version of the console and are poised to start the inevitable rewrite of the core software. What we 
would like to describe here are the revised estimates of what the software is good for, and further, where 
it will be going over the next few months. 

I. We have a system that is dynamically reconfigurable. 

What do we mean by "dynamic reconfiguration?" At a minimum, this implies the ability to rearrange 
and recombine individual processing elements such as filters, demodulators, or signal measurements on 
the fly without recompiling any of the soft 
ware. In essence, it means the capacity to "patch together" new radios of arbitrary design at will. What is 
especially important is the capacity to generate new processing chains either interactively or by program 
- in other words, to enable low-overhead experimentation for users, but also to provide one of the 
critical functions ofa self-aware (cognitive) radio. 

We also wanted to make it possible to integrate other tools into the processing chain. For example, there 
is a host of high-quality audio processing tools for such things as equalization, metering, and offline 
storage (recording). These tools exist either as plugins or expect functions in the form of plugins, so we 
are making the SDR components available in this format as well. 

There is also a purely utilitarian motive. One of the major design goals of the software was the ability to 
remote the application - to place it physically at an antenna, for example, so as to minimize feedline 
loss, etc. This configuration requires considerable flexibility but it also implies having limited hardware 
in the form of embedded controllers at the far end. Having the software be dynamically reconfigurable 
places lighter demands on the running environment, much as having loadble kernel modules obviates 
recompiling the OS kernel itself to add functionality. 

1 



II. A single system can handle multiple radios. 

This can take a number of forms. 

A system can have multiple soundcards, each one of which feeds an independent processing chain. If 
you're running on a CPU with enough cycles, why not use them? But there are other possibilities. For 
example, with a common clock on multiple board sets, it is possible to achieve sample-accurate N
channel-combined reception for broadband processing. 

On another front, multiple radios make it simple to have several different processing chains attached to a 
single input. Typical scenarios for this would be having constant signal measurement running alongside 
ordinary usage; or automatic classification, to achieve something like automated S02R operation; or 
background logging and diarization, running independently of typical operation. 

III. The software will work with all current Linux sound systems. 

At present there are two-and-a-half standards for audio processing under Linux: OSS, ALSA, and ALSA 
augmented by the jack connection system. Since the DttSDR core is decoupled from hardware input and 
output, and only requires simple synchronization, it can be integrated into any of those systems. 
Fundamentally this means that the core can be embedded in either a blocking or a non-blocking 
configuration, which leads to the next point. 

IV. The software will work with a variety of multiprocessing options. 

The major contenders at this point are pthreads, primarily a preemptively-scheduled architecture; GNU 
pth, a highly-portable cooperative (non-preemptive) arrangement; pthreads implemented on top of GNU 
pth; or even separate, individual user processes, which are fairly lightweight under Linux. 

Once again, having flexibility in this regard means having the ability to accommodate a variety of 
different operating environments, and it also facilitates implementations for a variety of operating 
systems as well, such as Mac OSX or the various BSDs. 

V. Minimal modifications (should) be required to cooperate with other programs. 

What we have in mind here is interfering minimally with people's other favorite applications like 
gl'v1FSK or other digital mode environments. Ideally it should be possible to run the entire SDR 
environment from within your favorite program. To that end we are trying hard to make it possible for 
the SDR core to be hidden transparently in the audio-io facilities, at least as far as the other applications 
are concerned. 

VI. Bindings for other languages. 

Dynamic reconfiguration has another nice side effect: it is only a short step away from making the full 
core functionality available to many other popular languages. This ought to make it easier, basically, to 
play with, and perhaps broadens the applicability of the combination of hardware and software. 

2 



Currently there are tools available to automate generation of bindings for python, perl, ruby, guile, and 
tel, among the scripting languages; for Common Lisp and ocaml, among the Object-Oriented dynamic 
languages (a nice match); and, most provocatively, matlab/octave, R, and S. There are some interesting 
educational possibilities here. 

VII. Other data paths and control streams. 

One artifact of a Unix-style driver/filesystem configuration is the ease with which various io and 
networking facilities can be exploited. We expect to be making available USB and FireWire taps at 
various places in the processing chain. 

Another intriguing possibility is making use of less-conventional multimedia facilities like MIDI, which 
offers a medium-bandwidth, rich, but simple io stream essentially for free. We are looking at smoothing 
out CW performance of the SDR-IOOO by optionally taking keying input from a game port via MIDI 
software streams. 

These then are some of the features of the DttSDR core that are currently at or near completion. The 
Windows version being distributed is a beta release. The corresponding Linux version, however, is still 
at the alpha stage, since it is still subject to considerable change. 

3 


