
144

Design of a Practical Handheld Software Radio: Part II

Chris Testa, KD2BMH
Los Angeles, CA
testac@gmail.com

October 9, 2015

Abstract

The design of a standalone battery powered Soft-
ware Defined Radio (SDR) is presented. Three
rounds of prototypes were designed, built, and
tested over the last three years. The hardware ar-
chitecture of the newest design is detailed, with
the goal of getting the device into the field to
build real RF links. The software stack, from
the high-level websocket user interface down to
the embedded Linux operating system are dis-
cussed. Finally, the latest work on the Field Pro-
grammable Gate Array (FPGA) modem are pre-
sented, including optimization work that drasti-
cally improves simulation performance.

Keywords

software radio, low-power, embedded systems,
Linux, FPGA, DSP, quadrature transceivers, RF
system analysis

1 Introduction

In 2012 I reported my first success along the
way of developing a new type of Software De-
fined Radio[1]; one in which the whole SDR is
contained in a single, portable unit. I was espe-
cially inspired to do this for my love of backpack-
ing, and I continually find myself in the position
where I really want to have radio communica-
tions available in places where today you can’t
expect them.
The dream, as Eric Blossom wrote in the ar-

ticle Exploring GNU Radio[2], is to stretch the
”smarts” of the Internet out from the cell towers
to everyone’s smartphone. The belief which I still
hold today, is that if we all carry around a base
station, we will be well on our way to distributed
and fault tolerant Internet access worldwide. I
know that this is a lofty goal, but with the right
tools we can begin to explore new frontiers in
networking.
My key goals for the project are to:

• Design and build a standalone, software de-
fined transceiver that works with commonly
available Amateur radio modes.

• Make it easy to use by providing connectiv-
ity and extensibility layered on top of Open
Source software.

• Focus on small footprint and low power
consumption to enable portable operation,
much like with a cellular modem chipset.

1



145

At the time I presented at the DCC 2012, I had
never designed or laid out a radio circuit board
before. I studied Computer Engineering at the
University of Maryland, College Park, and I’ve
loved ripping apart computers from a young age.
Radio Frequency circuits are an entirely different
beast, however. There’s a huge learning curve to
building a SDR from scratch, and the remainder
of this paper will detail the evolution of the de-
sign, and the things which I learned along the
way.

2 Hardware

2.1 Design Evolution

The first pre-alpha design was completed thanks
to the WIESEL laboratory at the University of
Utah, and with the help of my good friend Aaron
Schulman. Aaron at the time was finishing his
PhD in Computer Science at University of Mary-
land. I built the first transceiver by ordering de-
velopment kits for all of the main integrated cir-
cuits I wanted to use: a SoC FPGA1, a quadra-
ture transceiver, a frequency agile VCO & PLL,
and Analog to Digital / Digital to Analog con-
verters. Plugging them all together, and getting
access to a real RF lab, meant that I could build
the proof-of-concept and make sure that the core
idea was sound.

Building a radio from discrete components
turns out to be a difficult problem. The art
of building a receiver is a complex and detailed
one, full of tradeoffs between power, price, per-
formance, size, and many other factors. Further-
more, a core concern for me was that I needed
to build a quality transmitter as well. This ulti-
mately turned out to be the most difficult chal-
lenge.

The first custom board, Whitebox Alpha, was
built at the University of Maryland, College
Park, with the help of Aaron. The build oc-
curred four months after the first time I presented

1System on Chip Field Programmable Gate Array

Figure 1: Whitebox Alpha

Figure 2: Whitebox Bravo

the design at DCC 2012. I fabricated two 4-
layer PCBs with Sunstone Circuits, and ordered
parts from major distributors in the USA includ-
ing Digi-Key and Mouser. I also ordered a sol-
der paste stencil. Most of the components were
on the top, so I solder-pasted the side and then
carefully placed the components with tweezers. I
used a hot plate to solder on the components. It
worked quite well, except for the connector for
the computer, which I had to have professionally
put on to get a good connection. Ultimately, the
computer worked on this design but the IF os-
cillator was unable to lock reliably, due to me
messing up the nets around the PLL Loop Filter
and VCO’s tank circuit.



146

Figure 3: Whitebox Charlie

Whitebox Bravo was built at a contract man-
ufacturer (CM) in Carlsbad, CA, and I really
enjoyed using the surface mount assembly line.
This one came together around one year after
the build of Whitebox Alpha. My goal here was
to really focus on the core RF system and ver-
ify that I could design a PCB that would radiate
RF. The design had around 130 components on
it, and I was able to get all of the PLLs to lock.
I began to work on the full RF signal chain. A
major problem that I had still at this point was
that I had no RF test gear. In particular, if you
plan to make a radio without a calibrated RF
Signal Generator and RF Spectrum Analyzer, I
wish you luck! Those tools are critical to under-
stand the behavior of your creation.

After a year of working on Whitebox Bravo,
Bruce Perens K6BP started to acquire Boat An-
chors and ship them my way to help me be able
to understand the intricacies of the second pro-
totype. The lessons were clear - the various sub-
circuits need appropriate RF filtering to connect
them together, and the transmitter needed addi-
tional circuitry to calibrate it for spurious emis-
sions requirements. Given that I could solve both
of those problems, the device would be ready for
serious amplification and to be used by others.

Whitebox Charlie, was designed over a 7
month time span starting directly after the DCC
2014 Sunday Seminar that I did on FPGA

SoCs[5]. This board is a full five times more com-
plicated than the previous design. The goal this
time was to get the board off of my bench and
into the field. It sits inside of a 160mm x 75mm
extruded aluminum case from Hammond Mfg. I
use U.FL connectors on every important RF net.
I can always not stuff them after I’ve figured out
the design issues. The fabricated PCB is 6 lay-
ers and the additional two microstrip layers allow
for a much more dense route while maintaining
signal integrity for the critical RF traces.

2.2 Baseband Subsystem

The entire design received an overhaul based on
the lessons learned from the previous prototypes.
For power input, there is transient voltage sup-

pression, reverse polarity protection, and high
voltage filtering to condition the noisy signal
coming from a car battery as it is charged via
its alternator. Two on-board switching regula-
tors provide efficient digital power at 3.3 and
5 Volts for the embedded computer and its pe-
ripherals. A wide input-voltage tolerant 5 Volt
Low-Dropout Regulator (LDO) provides analog
power, and a 3.3V regulator stems off of this
for the analog circuits on the baseband. The
analog portion of the board can be turned off
from the microcontroller by setting a global En-
able flag low. Wakeup times from this state
should be on the order of 100ms. There are other
standby modes available that trade wakeup times
for static power dissipation.
The System on Module contains the baseband

embedded ARM Cortex-M3 and FPGA [3]. It
is in a separate daughter card which plugs into
the main board. The main reason to not place
this component myself is to not have to deal
with the 484 pin BGA package, in addition to
the BGA packages for the on-board LPDDR
RAM (64MBytes) and Flash (16MBytes). Rasp-
berry Pi B+ 40-pin and 8-pin (mostly) compat-
ible headers are available for custom expansion.
You’ll have to try individual boards to see if they
fit, and to see if you can get the driver ported.
I expect most WiFi, Bluetooth, GPS, and Au-



147
Figure 4: Baseband Subsystem Schematic



148

dio CODEC devices to work out of the box, but
your mileage may vary. I maintain a official list
of working devices in the codebase.
The system module supports standard com-

puter peripherals including USB On The Go
(OTG) and 10/100 Ethernet. There are 6 LEDs
on board covering RESET, Power, PTT, and
three for user control. The RESET and PTT sig-
nals also expose Open-Drain outputs so that way
you can control much higher voltage equipment,
like a 100W power amplifier and a T/R switch.
The only externally exposed button is a RESET
button, but there is a 100-mil header ready for
you to tap in for Reset, PTT and dit-dah paddle
inputs. All inputs are double-layer Electrostatic
Discharge (ESD) protected for ruggedness.
The clocking subsystem uses a high-

performance, low phase noise 10MHz Tem-
perature Compensated Crystal Oscillator
(TCXO) to provide the main sampling clock
for both the analog and digital sections of the
mixed signal system. A clock buffer distributes
the signal to the PLL reference inputs, as well
as to the ADC and DAC. A transformer coupled
external 10MHz reference can be applied as well,
and switched in by changing a jumper.
The CODEC is the most important set of com-

ponents for transceiver performance on the base-
band side of the design. For this project I am
building a quadrature sampling transceiver, so
the ADC and DAC must be of the dual, simul-
taneous sampling variety. This design features
operational amplifiers at the inputs and outputs
of the ADC & DAC respectively. The reason
for this, which I did not understand for earlier
designs, will be explained later in the section
on overall system performance. A tradeoff must
be made between sampling speed, sample reso-
lution in bits, and power consumption. In this
case, I chose a 10-bit ADC and am operating it
at 10MSPS. The DAC is also 10-bit, 10MSPS.
We would ideally move to 12-bit models, but the
oversampling does help somewhat for maintain-
ing overall system dynamic range.
An additional 8-channel auxiliary ADC is used

to observe the following signals: transceiver tem-

perature, input power voltage, received signal
strength, transmitter calibration signals, and
PLL test points. An additional 4-channel aux-
iliary DAC is used to calibrate the baseband
transmit signal coming out of the communication
DAC. The objective of this circuit is to minimize
local oscillator feedthrough. The transmitter cal-
ibration routine will be described in more detail
in the next section.

2.3 RF Subsystem

The RF portion has its own power tree to iso-
late the subsystems as much as possible. Numer-
ous rails are required, and LDO’s were chosen for
low noise and high Power Supply Rejection Ra-
tio (PSRR). There’s a 3V rail for the Low Noise
Amplifier, a 3.3V Rail for the VCO’s, and a sep-
arate 3.3V regulator for the rest of the analog
subsystems. A 1.8V LDO supplies current to the
RF Gateway.
The RF Gateway is a simple SPI slave designed

in a cheap CPLD from Xilinx. The gateway talks
to the main computer via SPI, and then con-
trols the various RF and amplifier switches. This
turned out to be cheaper than using discrete logic
gates, and is safer than using just GPIOs. For
example, it’s not possible to turn on the Power
Amplifier when receiving, thus reducing the like-
lihood of blowing the amplifiers.
Due to the superheterodyne architecture of

the quadrature transceiver, two local oscillators
are needed. The first oscillator works with the
quadrature modulator & demodulator to go from
the fixed Intermediate Frequency of 90MHz down
to baseband. Since this oscillator’s frequency
never changes, it’s Loop Filter is optimized to
trade lock times for reduced phase noise.
The second oscillator works with both the re-

ceiver’s mixer, as well as the transmitter’s im-
age reject up converter. This oscillator has
very demanding requirements. It needs fine fre-
quency resolution, fast lock times, and low phase
noise. These conflicting requirements means that
a tradeoff has to be made. Both oscillators have
available U.FL connectors so a new oscillator can



149
Figure 5: RF Subsystem Schematic



150

be plugged in depending on the application.
The core transceiver chip comes from CML

Microsystems[4]. This transceiver has a very de-
tailed manual and I’ve read it more times than I
care to admit. There are many features of this
chip and I will explore some of them later when
we get to talking about the integrated design.
Between the core transceiver and the antenna

jack, there sits a lot of additional RF circuitry
that was not in the Bravo design. On the trans-
mit side, after the signal leaves the transceiver
chip, it flows into one of four bandpass filters in a
selectable filter bank. The goal is to cut out spu-
rious emissions that leak in from the harmonics
of both oscillators.
After filtering, the to be transmitted signal can

be sent down two paths: the first is to the power
amplifier (20dBm maximum output) on the way
to the antenna, while the second path goes to
a RF log detector. The Log Detector is used to
measure the signal strength of spurious emissions
and is used to calibrate the transmitter’s oscilla-
tor leakage and undesired-sideband suppression.
For the receiver, a switch lets you choose be-

tween two different signal sources. One comes
from the transmit-receive switch, while the other
comes from a built-in RF noise source. The noise
source is built using an avalanche diode that is re-
verse biased very close to its breakdown voltage.
The output of this signal is amplified and pre-
sented to the receiver chain as a self-test feature.
Whichever receive signal is chosen, it then flows
through the onboard bandpass filter bank and
into an LNA. The LNA provides 14dB - 20dB of
gain depending on the frequency. The final step
as an RF signal is through a matching network
on the way into the transceiver chip’s mixer.

2.4 System Performance

A very important step, which was accomplished
early in the Carlie design phase, was to do a full
RF System analysis. The goal here is to start to
look at how the transceiver would operate in a
real RF link. An important thing to remember
while reading this section is that when we talk

about RF signals, we really want to talk about
power, and not in terms of voltage, current and
resistance. So put aside Ohm’s Law for the mo-
ment (though don’t forget it!) and remember the
power laws P = IV = V 2/R = I2R. Also, we’ll
be using decibels everywhere, so we can just add
the power terms together to get overall system
power.
For the receiver, a signal is present at the an-

tenna of lets say -110dBm at 50 Ohms. First, the
signal flows through the T/R switch, the receiver
signal switch, and the bandpass filter, which at-
tenuates the signal by 6.2 dB, bringing it down
to -116.2dBm. Next, the LNA is applied. The
LNA provides 15 dB of gain, bringing the signal
back up to -101.2dBm, while only increasing the
noise by 0.6 dB.
The next sections of the receiver chain are fo-

cused around the transceiver chip. A 1:1 trans-
former balun and matching network brings the
impedance up to 300 Ohms to be matched to the
mixer. Its after this mixer stage that one of three
possible bandpass filters can be selected: 1MHz,
100kHz, or 30kHz. The selected filter bandwidth
plays an important role on the final Signal to
Noise ratio as seen after the quadrature demod-
ulator. This is because the narrower the IF filter,
the less noise power that makes it through to the
ADC.
Now comes an important step which I did not

include in the Bravo design - there is an opera-
tional amplifier between the quadrature demodu-
lator and analog to digital converter. I didn’t see
the purpose at first, but now I know the goal of
the Op Amp is to increase the signal power. For
example, if the input impedance of the OpAmp
is 100kOhm, and the output impedance is 50
Ohm, and the voltage gain is set to 1x (or 0dB),
there is actually a power gain of 33dB due to
the impedance transformation through the volt-
age follower.
Overall, the receiver into the computer has a

computed Noise Figure of 6dB and has sensitivity
down to -110dBm, while consuming less than one
Watt.
For the transmitter, the output of the Dig-



151

ital to Analog converter is 1 mA into a 400
Ohm resistor, or around -4dBm. There is an
LC based lumped element filter followed by an
OpAmp that conditions the signal leading into
the transceiver chip. The image-reject up con-
verter has a characteristic impedance of 200
Ohms, and on the way out a 4:1 balun is used
to match the signal back to 50 Ohms at -10dBm.
The signal attenuates 5dB as it goes through the
bandpass filter bank. Next, two amplifier gain
stages are applied to raise the signal up 15 and
then 20 dB, resulting in a final signal strength of
20dBm, or 100mW at the antenna jack.

3 Software

3.1 User Interface

The user interface is your smartphone or tablet.
My original dream was to have the smartphone
interface be inside of the device, but it doesn’t
make sense yet to integrate it all. Step by step
we can get there, but it’s too complex for Charlie.
Your device can be plugged into the USB OTG
port and charged with the on-board 5V regula-
tor, so they are good companions.

Android/iOS can be interfaced via USB OTG
or WiFi/Bluetooth if you attach the right add-on
to the Whitebox. Since I’ve started this project,
a number of high quality Applications have been
ported and implemented. AprsDroid [6] is a
nice interface to APRS. Sound card support is
available today, but the Bluetooth TNC or TCP
modes should be possible to interface with di-
rectly given some hacking.

FLDigi [7] was ported recently and can be sup-
ported out of the box. This adds a lot of modes
including MFSK, BPSK, PSK, OLIVIA, THOR,
DOMINOEX, and MT63. All of these modes are
supported at various standard baud rates.

There’s no reason to not see the rest of the pop-
ular digital modes, like JT65 [8] ported. There’s
hope of getting FreeDV [9] and other digital voice
modes via the Digital Voice Server [10]. I would
really like to see CHIRP [11] ported to Android

with some kind of universal USB programmer.
Whitebox support would be neat, too.
There’s lots of fun projects for smartphones,

and when we do end up with the touch screen
inside of a Whitebox, all of it will work natively.
So if these kinds of projects interest you, go for
it!

3.2 Internal Software Stack

From the top of the software stack, the device
looks like a web server over a network connection.
Bruce K6BP has been contributing to the project
with the Algoram websocket server (checked into
the main codebase[12]. He ported websockets
and cJSON to the embedded platform. There’s a
full responsive UI for controlling the transceiver,
as well as a web service API. The JavaScript sup-
ports the WebAudio API and you can control
the transceiver right from Chrome on Android
devices.
Available options for the receiver include a

checkbox to turn on/off the LNA; 0dB - 48dB of
attenuation in 6dB increments; a button to run
the receiver calibration. The transmitter is sup-
ported with a checkbox to turn on/off the Power
Amplifier, and a button to run the transmitter
calibration. Both transmit and receive can select
the appropriate bandpass filter. There are visual
indicators for the transceiver temperature, input
voltage, received RSSI, and PLL lock status.
The transceiver is controlled by the white-

box library. This provides the verbs and nouns
needed to control the transceiver. Things like
‘whitebox tx’ starts a transmission, and ‘white-
box write’ writes data out to the transmitter.
Conversely, ‘whitebox rx’ starts a receive, and
‘whitebox read’ reads data out of the receiver.
There’s also data structures and methods to con-
trol modems exposed from the FPGA.
Linux is the common denominator of the in-

ternal Whitebox software stack, and it provides
a plethora of features. We even get the AX.25
stack for free, built right into the OS.
The kernel interfaces with all of the hardware

via drivers, including a custom driver that con-



152

trols the digital signal processing which happens
in the FPGA, which will be discussed at the end.

The driver is zero memory copy, utilizing
mmap to share memory between user space and
the driver. A circular buffer is used to transport
data between memory to peripherals, peripher-
als to memory, and memory to memory with the
Direct Memory Access Controller (DMA).

For connectivity, as mentioned earlier, both
USB OTG and 10/100 Ethernet are available.
USB OTG is probably the most interesting for
expanding the Whitebox. I ported ALSA to the
device, and USB sound cards work great in USB
host mode. So does WiFi, Bluetooth, and GPS
USB dongles.

Linux also includes a Gadget driver interface,
and you can expose the Whitebox to your PC
as a full USB peripheral. The same cable can
support a sound card, a command line shell, a
networking interface, and many more; all at the
same time.

I find the Ethernet to be invaluable while I
develop. You can mount your laptop over NFS to
do quick and iterative development. You can also
flash the operating system over Ethernet. The
FPGA & bootloader can be programmed from
the Ethernet too, though I have not finalized the
utility for this yet.

A bricked device can be recovered via a JTAG
header, though you do need a custom program-
mer for now. BusPirate support is coming, but it
depends on Actel targeting the SVF file format
for the SmartFusion2. . . they say it is “Coming
Soon”.

The FPGA toolchain is free, if you sign up with
Microsemi. It supports a big enough FPGA to
have a few transceivers in one. It (apparently)
works on RHEL Linux, though I usually use it
on Windows. You won’t have to mess with that
stuff though unless you want to play with the
digital signal processing chain.

4 Firmware

Since the Whitebox is a quadrature transceiver
SDR, an important process that happens in the
baseband modem is to convert from software
data, like audio or binary payloads, to a base-
band signal. The baseband signal is a quadra-
ture signal, meant to be sent through a quadra-
ture modulator or captured from a quadrature
demodulator.
To transform between the software and base-

band signals, we need a modem. This modem
sits in the FPGA and consists of two main parts:
the digital signal converter, and the modula-
tors/demodulators. All of them are digital signal
processing flowgraphs.
The digital signal converter moves from a low

sample rate baseband signal, to a high sam-
ple rate baseband signal. The signal is rate-
converted with a CIC filter, and then passes
through a quadrature mixer for fine tuning. The
quadrature mixer is based on complex multiplies
instead of CORDIC, since hardware multipliers
are plentiful on the SmartFusion2. A final FIR
rate converter shapes the signal up to 10MSPS.
The FIR’s coefficients are software controllable.
The reverse flow happens on a receive.
The modem consists of both a modulator for

the transmitter, and a demodulator for the re-
ceiver. I’ve sketched out a modem for AM, FM,
SSB, and FSK, but I have not finalized the de-
sign. The full modem will sit in the smallest Mi-
crosemi FGPA with the digital signal converter
by intelligently sharing the hardwired multiplier
resources.
I gave the Sunday Seminar at the TAPR DCC

2014 on the concept of System on a Chip Field
Programmable Gate Arrays. If you want to cover
the basics, I recommend you check out the four
hours of footage up on YouTube.
Since the FPGA is firmware, and it can be re-

programmed in the field, it’s important to have
the right tools to help build the machinery in
the FPGA. I have spent a lot of energy on using
completely free and open tools to do all of the
design validation.



153

The flow previously has been to use Python to
describe the register transfer logic using a sub-
set of the language and the MyHDL library[13].
This has turned out to be really valuable, as it
makes generating complex Verilog modules much
more streamlined. You can use object oriented
constructs in Python to help efficiently describe
the design.

The easiest way to do simulations is to co-
simulate between Python and an Open Source
verilog simulator, like Icarus Verilog[14]. This
works pretty well, but it is not efficient at all.
As the modem gets more complex, the simula-
tion times grow, and it gets harder and harder
to properly design the modem.

I am now using an additional tool -
Verilator[15]. Verilator takes the final Verilog
code, and converts it into a C++ class. Oper-
ating at the bare metal has given me a full 100x
improvement in speed. Its not an Apples to Ap-
ples comparison, but at the end of the day us-
ing the new tool flow you can much more quickly
and iteratively design new signal processing flow-
graphs in the FPGA.

5 Conclusion

The problem of building a completely self-
contained, portable software defined radio has
been explored. The evolution of the hardware
was documented over the three years of develop-
ment. The details of the hardware for the most
recent prototype were presented. The user inter-
face and developer software stacks were covered.
Finally, the digital signal processing firmware op-
timizations were discussed.

There are many sub-problems to explore as
the hardware, software, and firmware continue
to evolve and mature into a state that we all can
use in the field. If you’re interested in helping
out in any way, contact me, visit my website[16],
and get involved!

References

[1] Testa, Chris KD2BMH. ”Design of a Practi-
cal Handheld Software Radio.” Digital Com-
munications Conference 31 (2012): 122-7.
Print.

[2] Blossom, Eric. ”Exploring GNU Radio”.
Web. 17 Aug. 2015.

[3] Microsemi SmartFusion System-on-
Module (SOM). Web. 17 Aug. 2015.
http://www.emcraft.com/products/133

[4] ”CMX991 - RF Quadrature Transceiver.”
CML Micro Systems. Web. 17 Aug. 2015.

[5] Testa, Chris KD2BMH. ”System on
a Chip - FPGA Programming for
Mixed Signal Systems.” HamRadioNow,
5 Jan. 2015. Web. 17 Aug. 2015.
http://arvideonews.com/hrn/HRN Episode 0

[6] Lucus, Georg DO1GL. ”APRSdroid -
APRS for Android.” Web. 17 Aug. 2015.
https://aprsdroid.org/.

[7] Douyere, John VK2ETA. ”AndFlmsg -
Flmsg with Fldigi Modems on Android
- User’s Manual V Beta-0.4.0.” Index of
/vk2eta. 21 Feb. 2015. Web. 17 Aug. 2015.
http://www.w1hkj.com/vk2eta/.

[8] ”JT65 HF JT65A HF Frequencies Frequency
Information - Digital Mode Software Down-
load.” JT65 HF. HFpack Inc. Web. 17 Aug.
2015. http://hflink.com/jt65/.

[9] ”FreeDV: Digital Voice for HF.” FreeDV.
Web. 17 Aug. 2015. http://freedv.org/.

[10] Perens, Bruce K6BP. ”Algoram Digital
Voice Server.” Algoram Digital Voice Server.
Web. 17 Aug. 2015.

[11] Smith, Dan. ”CHIRP.” Home. Web. 17 Aug.
2015. http://chirp.danplanet.com/.

0185.html.



154

[12] Testa, Chris KD2BMH. ”tes-
taco/whitebox.” Github.com. Web. 17 Aug.
2015. https://github.com/testaco/whitebox

[13] ”MyHDL from Python to Silicon!” MyHDL.
Web. 17 Aug. 2015. http://www.myhdl.org/.

[14] ”Icarus Verilog.” Icarus Verilog
Homepage. Web. 17 Aug. 2015.
http://iverilog.icarus.com/

[15] ”Intro - Verilator.” Veripool.
Web. 17 Aug. 2015.
http://www.veripool.org/wiki/verilator

[16] ”Whitebox Bravo documenta-
tion.” Testa.co. Web. 17 Aug. 2015.
http://radio.testa.co/.


