
ARRL and TAPR
Digital Communications
Conference

38th

September 20-22, 2019
Detroit, Michigan

ISBN: 978-1-62595-112-0

i

 ARRL
 225 Main Street
 Newington, CT 06111-1494 USA
tel: 860-594-0200 www.arrl.org

 Tucson Amateur Packet Radio
 PO Box 852754
 Richardson, TX 75085-2754 USA
tel: 972-671-8277 www.tapr.org

 38th ARRL and TAPR
Digital Communications
Conference

ii

Copyright 2019

The American Radio Relay League, Inc.

Copyright secured under the Pan-American Convention

International Copyright secured

All rights reserved.

No part of this work may be reproduced in any form except by written permission
of the publisher. All rights of translation reserved.

Printed in USA.

Quedan reservados todos los derechos.

ISBN: 978-1-62595-112-0

First Edition

iii

ARRL and TAPR – 38th Annual
Digital Communication Conference
September 20-22, 2019 – Detroit, MI

Greetings!

Welcome to the 38th annual ARRL and TAPR Digital Communications Conference (DCC).

Each year a call for papers is announced. In August we collect the papers and print the
proceedings that you are holding in your hands. This is a great testament to the mission of
“advancing the amateur radio art.” Ideas are shared which in turn create more new ideas. Each
DCC builds upon the previous. For a complete listing of past proceedings, please see
https://www.tapr.org/pub_dcc.html

Since 2008 we’ve had the pleasure and video skills of Gary Pearce, KN4AQ, of HamRadioNow.
He and a small team of volunteers video recorded and edited each of the DCCs including our
banquet speaker and Sunday seminar. If you would like to virtually attend DCC please see
https://www.hamradionow.tv/tapr-dcc.

As of 2018, Gary turned over the video reins to Jason Johnston, KC5HWB, who produces “Ham
Radio 2.0.” Jason returns again this year and we are very grateful to him in broadcasting these
exquisite talks to the world. You can view Jason’s videos at
https://www.livefromthehamshack.tv/?s=dcc. Please support Jason on Patron
(https://www.patreon.com/HamRadio) and Kickstarter
(https://www.kickstarter.com/profile/hamradio20) campaigns to enable him to travel to and
record each DCC.

All of the video recording efforts and printed proceedings records for posterity all the fine work
these experimenters have done. While attending virtually is educational, we are certain that you
will enjoy the sharing of ideas and socializing that in-person attendance of the DCC can give.
Please tell others about the experience you had here and help grow attendance for the DCC.

With all of that said, please sit back, relax, and enjoy this years DCC.

73,

Steven Bible, N7HPR
President, TAPR

iv

ARRL and TAPR 38th Annual

http://www.tapr.org/dcc

Digital Communications Conference
September 20-22, 2019 • Detroit, MI
Last Revision: August 20, 2019

Schedule at a Glance
Thursday, 19 Sep

9:00 AM TAPR Board Meeting
5:00 PM (everyone is welcome to attend)

Friday, 20 Sep
8:00 AM Conference Registration and
 Demonstration Room Open
8:45 AM Welcome
9:00 AM Technical Presentations
Noon Lunch
1:00 PM Technical Presentations
5:30 PM Friday Night Social
10:00 PM Demonstration Room Closed

Saturday, 21 Sep
8:00 AM Conference Registration and
 Demonstration Room Open
8:45 AM Welcome
9:00 AM Technical Presentations
Noon Lunch
1:00 PM Technical Presentations
4:45 PM TAPR Membership Meeting
6:00 PM No Host Cash Bar
7:00 PM Dinner Banquet
10:00 PM Demonstration Room Closed

Sunday, 22 Sep
8:00 AM Sunday Seminar
Noon

Rooms at a Glance

Registration tbd
Demonstration Room Dearborn

Thursday

TAPR Board Meeting Romulus

Friday

Main Session Technical Presentations Ballroom
Lunch North Private
DCC Social North Private

Saturday

Main Session Technical Presentations Ballroom
Introductory Sessions Presentations Romulus (2nd Floor)
Lunch North Private
Dinner Banquet North Private

Sunday

Sunday Seminar Ballroom

v

Preliminary 2019 DCC Conference Schedule
Friday Saturday Sunday

8:00 AM Conference Registration
Demonstration Room Open

Conference Registration
Demonstration Room Open

Sunday Seminar
8:00 AM 12:00 AM

Learn to build and

operate your own
SatNOGS ground
station

Dan White,
 AD0CQ
Corey Shields,
 KB9JHU

8:45 AM Main Session
Welcome and Introductions

Main Session
Welcome and Introductions

Introductory Session

9:00 AM F1 S1 N1

9:45 AM F2 S2

10:30 AM F3 S3 N2

11:15 AM F4 S4

Noon Lunch Lunch

1:00 PM Lightning Talks
(Impromptu 5-minute talks)

Lightning Talks
(Impromptu 5-minute talks)

N3

1:45 PM F5 S5

2:30 PM F6 S6 N4

3:15 PM F7 S7

4:00 PM F8 S8

4:45 PM Play Time
in the Demonstration Room

TAPR Annual Meeting

5:30 PM Friday Night Social
No-Host Cash Bar

Play Time
in the Demonstration Room

6:00 PM Dinner
No-Host Cash Bar (6:00 PM)
Dinner (7:00 PM)

Bill Brown, WB8ELK
Awards Presentation
Prize Drawings

10:00 PM Demonstration Room Closed

vi

Table of Contents

Welcome; Steve Bible, N7HPR ... iii

Tentative Schedule .. iv

PSAT2 DTMF Experiment APRStt – Touchtone® Digital Communications
 Using any Radio for Data Exchange;
 Bob Bruninga, WB4APR ... 1

Extending D-STAR with Codec 2;
 Antony Chazapis, SV9OAN .. 10

IPV6 for Amateur Radio;
 Daniel Estévez, EA4GPZ / MØHXM ... 24

Synchronization in FT8;
 Mike Hasselbeck, WB2FKO ... 30

WSPR in an educational Project;
 Anthony Le Cren, F4GOH .. 41

Portable Audio Frequency-Shift Keying Sensors using a Hamshield mini;
 Nolan Pearce, KE8JCT, Stephen S. Hamilton, KJ5HY,
 and Kate J Duncan, KB2ZOO ... 48

An FPGA Learning Experience: SPI Interface to Max10 FPGA;
 Gregory Raven, KF5N ... 52

Modulation – Demodulation Software Radio;
Alex Schwarz, VE7DXW .. 64

How to Kill Packet-Radio & APRS? Come to Serbia! (Part 2);
 Miroslav “Misko” Skoric, YT7MPB ... 75

GPS Watch Technology;
 Darryl Smith, VK2TDS ... 87

1

PSAT2 DTMF Experiment
APRStt – Touchtone® Digital Communications

Using any Radio for Data Exchange

Bob Bruninga, WB4APR
US Naval Academy Satellite Lab

DTMF (Dual Tone Multi Frequency) (aka Touchtone®) signaling has
been built into almost all Amateur Radios for decades and more recently
cellphones, yet most hams do not make use of this powerful data entry
and data exchange capability for their special events. They continue to
use laborious voice directed nets and hand transcribed data. Although
APRS brings an ideal digital communications capability to such
applications, not all volunteers have the more expensive APRS capable
radios. But they all have DTMF!

APRStt has been around since 2001 [http://aprs.org/aprstt.html] and used by the author for
several special events, but it has not caught on, even though now HT’s with built in DTMF are
down around $50 each, a fraction of the cost of an APRS radio. To wake things up and give a
worldwide demonstration of the power and practicality of DTMF signaling for data exchange,
the new PSAT2, on orbit since June 2019, has a primary mode for DTMF uplink and
voice/APRS downlink. Although an entire APRStt protocol has been developed for almost any
application that APRS can do, the implementation on PSAT2 consists of two DTMF formats that
are practical in the space environment. One for worldwide position reporting by Grid Square and
the other for sending APRS messages. [http://aprs.org/psat2.html]

Figure 1. PSAT2 has Packet, PSK31, SSTV, Voice Synthesis and DTMF transponders.

As you can see in the Concept of Operations Figure 1, PSAT2 carries a number of experiments
for a number of additional modes beyond just simple digipeating. In fact, these other unique

2

modes have higher priority compared to digipeating because they are new and different. These
modes are a full duplex PSK31 transponder with HF SSB uplink and UHF FM audio waterfall
downlink. Also included in the downlink audio passband every four minutes is an SSTV image
either from memory or from the live camera if the view appears to be the Earth (ie, not full sun
and not the blackness of space). And importantly for this paper, the first ever DTMF uplink-to-APRS
downlink with Voice user feedback.

PSK31 and SSTV: The PSAT2 PSK31 and SSTV downlink is on 435.350 +/- Doppler using
any UHF FM receiver (SSTV only when PSAT2 is in the Sun). You will see the audio waterfall
with satellite telemetry at around 280 Hz, PSK31 users between 550 to 950 Hz and occasional
SSTV images between 1200 to 2300 Hz. Using SSB uplink on ten meters and UHF FM
downlink, the total Doppler shift of PSK31 users is only about 1 Hz per second average. On
approaching and receding passes for a user, where Doppler changes very little, conventional
PSK31 decoders can work OK.

Full Duplex, Doppler Corrected Uplink: But for serious two-way contacts, users should
download the special Doppler corrected PSK31 uplink program written by Andy Flowers,
K0XY. It not only adjusts your uplink Doppler automatically so you stay at a fixed location in
the passband, but it also allows you to operate full duplex with your HF uplink for the full
duration of the pass. You can chat with everyone in parallel as fast as you can type!
Download: http://www.frontiernet.net/~aflowers/dopplerpsk/dopplerpsk.html

Packet Digipeater: PSAT2 becomes the 6th active
APRS digipeater in space. The goal is to have
enough digipeaters so that Ham users around the
world are never more than a few minutes from
position/status reporting and 2-way text messaging
anywhere on Earth. Ten satellites would get close to
users being no more than about 10 minutes from any
next pass. The basis of the packet portion of PSAT2
is the re-packaged Byonics TinyTrack4 APRS
transceiver that we call the SATT4 shown in Figure
2. In addition to digipeating, it does all the normal
packet telemetry, and command and control as well.
Initially, priority is being given to DTMF
experiments and the digipeater is off. For live status
and downlinks, see [http://aprs.org/sats.html].
 Figure 2. The SATT4 Packet System

APRStt and DTMF: But the real fun and unique experiment is the DTMF uplink, which lets
anyone with almost any inexpensive FM radio participate in the usual APRS style contacts. This
mission is not so much to demonstrate some kind of great idea for satellites, but more so, to
demonstrate to APRS users worldwide the power of DTMF data from-any-radio into the global
APRS-IS (internet system). The DTMF downlink from PSAT2 is visible on this web page:
http://www.aprsat.com/dtmf

3

Figure 3. The PSAT2 internal and external views. The camera peeps through a hole in the rail.

Operating Pecularities: PSAT2’s 28 degree inclined elliptical
orbit with apogee at 860 km and low perigee at 300 km means it
never gets higher than 28 degree latitude which makes it difficult
to work in Northern states. But the significant difference is the
footprint between apogee and perigee shown in Figure 4, which
can make a 20 degree or so elevation difference on the horizon.
When apogee circulates to be over the northern hemisphere, then
more northern stations can work it. The apogee goes through a
complete cycle every 34 days. Figure 4. Footprint sizes

Pass Timing for Mobiles: Another
interesting thing about the orbit is that it is
almost time synchronous; meaning that a
pass will occur almost the same time every
day (though five minutes later). But then,
an earlier pass will appear 90 minutes or so
earlier every other day. This makes it very
easy to do mobile/portable operations
without any computer once you hear one
pass and remember the offsets.
 Figure 5. PSAT2’s easy to remember pass times.

4

 Camera: By default, the HF/UHF PSK31 and
SSTV modes have been enabled from launch and
available to users. During the initial activation, the
camera took some images to file. It has been
sending them down over time. The best earth
photo is shown here. Later, live camera and other
modes were enabled.

Figure 6. One of the best early SSTV camera
images from the Brno University camera.

Mode Status Bits: The 8 bits on the end of every one minute
telemetry packet indicates the status of the various modes.
Normal digipeater operations will show a pattern of x1xx1xx.
But if DTMF is enabled, the DTMF bits are 1101xxxx as
shown here. Generally, PSAT2 will be in DTMF mode with
the digipeater off to keep the DTMF uplink exclusive for
DTMF users on 145.980 MHz.

 Figure 7 Default mode Status Bits

Narrowband Uplink Modulation is Required: Unfortunately, PSAT2 uses a low cost off-the
shelf receiver with modern narrowband channelization. This causes distortion on all uplinks that
are not Doppler compensated. Don’t even think about transmitting to PSAT2 with normal USA
model radio not set to narrowband and using 5KHz channel steps except for the center few
seconds as the Doppler passes rapidly through zero offset. Do not transmit otherwise because
PSAT2 will never decode you and you are only jamming others.

Operating Frequencies:

 - APRS/DTMF/Voice downlink: 145.825 1200 baud
 - APRS digi uplink 145.825 if enabled
 - DTMF uplink 145.980 when enabled
 - PSK31 Downlink: 435.350 MHz +/- 5 kHz FM (300 mw)
 - PSK31 Uplink: 29.4815 MHz PSK31 SSB (25 W and omni vertical typical)

Overall APRS Satellite live Web Page: http://aprs.org/sats.html

APRStt GRID MAP Encoding: The map and table below encodes the 99 grids that have 99%
of the worlds ham population into only 4 DTMF digits by converting the first two letters into two
digits from the 00-99 table. You can see that our Maryland FM19 grid becomes 1819 in DTMF.
A table is also shown below that simplifies finding your grid. Notice that three grids for Indonisa
OI, OJ, and PI appear in the Canada, USA and Central America blocks.

5

Other Grids: Due to popular demand for hams
that were left off that map (ie, Hawaii), we can
(with the efforts of WA7MXZ and KB6EBR)
make adjustments. For Hawaii, we have
designated the grid of HI and can distinguish it
from the real HI in Brazil by comparing where
PSAT2 is at the time of the contact and then
correct for it on the DTMF downlink page.

APRStt Callsign Encoding: PSAT2 cleverly
compresses a 6 character call into only 10 digits
following the 4 digit grid noted above. The first six digits
of the call are the matching single keys for the callsign
letters, EG: 924227 for WB4APR. The next 4 digits
encode the 2 bit location of each of the 6 call letters on
each of the 6 keys used. For example, the 6 letters of
WB4APR on the 6 keys are key locations 120112. Since each location is between 0 and 3, they
can be encoded in 2 bits each (powers of 4) and assembled left to right into a 12 bit binary
number. To convert to decimal, take the first 2 bits times 1024, the next 2 bits times 256, the next
2 bits times 64, the next times 16, the next times 4 and the last 2 bits times 1. Then add them up
and get the 4 digit decimal "key code" (1558 in this example).

This 4 digit decimal number we call your callsign key code. For those that are 12-bit-challenged,
Bob Wood WA7MXZ has written an DTMF Callsign Encoder to do this 4 digit number for you.

6

For shorter calls, right-pad to 6 with spaces. A space is encoded as the "0" key with the key
location code of 1. The entire Grid and call report adds a "*" at the beginning and a "#" at the
end for the full 16 DTMF key report. See: [http://aprs.org/PSAT2Translator.html]

Other than your gridsquare, you only need to memorize the last four digit special code because
your call is simply spelled out with the letters on the keys.

DTMF Robustness: The combined 16 key combination is then stored in the DTMF memory of
the users radio so that it can be transmitted in a single 3 second burst. Since the entire code is self
contained, is always 16 keys, is sent at a standard speed, always begins and ends with known
keys and all keys in-between are decimal only, then any other combinations will be ignored.
Also the usual failure mode of DTMF is duplication of digits or omission of digits which will be
ignored by the mentioned constraints. A successful uplink will be ACK-ed by voice since the
DTMF user cannot see the APRS downlink.

Hints: Since the hardest thing for a DTMF decoder to recognize is two of the same digits in a
row, check your own code. If there are no duplicate digits in a row, then you might be able to
select fast DTMF on your radio. But otherwise, we have found that slower DTMF works best
(100 ms). The most important thing of course is using narrowband FM and tracking Doppler
within a few hundred Hz. Also, the DTMF receiver goes to sleep after 5 minutes of no use. If
you are the first user on your continent, press and hold a key for 3 seconds to wake it up.

DTMF MESSAGES: The DTMF decoder will also accept encoded Messages. Since everything
in ham radio has already been said, we simply stored the top 99 common ham radio messages on
the spacecraft and you select the appropriate message with a two-digit message number (00 to
99). These messages are the standard ARL radiograms plus some other special ones (such as
40,41 and 42 for QSL’s) for this satellite. To send one of these messages in the same 16 key
DTMF memory use either the C or B format. These are 16 key DTMF strings that begin with the
"C" key to indicate a message, and then a 2 digit message number and then a 2 digit modifier
xx, followed by the above encoded CALLSIGN. If the message is an actual ARL Emergency
message, then the modifier should be 99 and the speech will include the word "EMERGENCY".
If the modifer is anything over 90, then it will not say Emergency but will say TEST. If the
modifier is less than 90, then the modifier will only be used if the template for that message has a
blank in it for insertion of the modifier.

DTMF ARL RadiogramMessage Format: CMMxxCCCCCCXXXX#
DTMF special reversed QSL Message Format: Bxx40CCCCCCXXXX#

For messaging it is assumed that you will generally just key in the first 3 digits and then finish
the uplink with the remaining stored callsign from memory. The C format is when you want to
send multiple messages from your callsign. Type in the CMM and then have the rest stored in a
DTMF memory. The B format is when you want to send the same message (such as one of the 3
QSL messages) but easily modify the modifier. In this case, you key in Bxx and then store the
remainder of the message and call in a DTMF memory.

7

In either case, the "xx" digits are a numeric modifier that will replace any "__" blank in the
message text. See the Actual Flight list of messages and for background the standard ARL
radiograms and a copy of the Maritime Emergency Codes that are also included.

Making a Contact: When you send your grid and call by DTMF the spacecraft will say "GRID
FM19 from WB4APR, QSO number xx". The QSO number increments with each new station
up to 99 and rolls over. To complete a contact with such a grid, send the QSL message number
40 (or 41,42) with the QSO number xx. The spacecraft will say W3XYZ says message number
40 QSL your QSO number xx, my number is yy" to complete the contact. Of course, an APRS
copy of each of these messages will also come down on the downlink for those with APRS
radios and be captured by the http://www.aprsat.com/dtmf page.

-------------------------------- APRStt General Use --

Extrapolation of APRStt and DTMF to other local Applications and Events: The full
APRStt spec has many formats for position reporting and callsigns, all to fit within the 16 key
DTMF memory limit. When data blocks are 4 digits, then full callsigns can be used (10 digits).
When up to 7 digits of data are needed (say Marathon runner numbers), then callsign suffixes
can be used (5 digits). When up to 9 digits of data are needed, then a 3 digit locally assigned
user ID (3 digits) can be used.

Examples of 4 and 6 digit data:

- XXYY gives positions to the nearest mile over a
100 mile square grid area

- XXYY gives positions to the nearest 500’ over a
10 mile square grid area

- XXYY gives positions to the nearest 50’ in a
local event covering a mile (same as GPS)

- XXYY as minutes of Lat/Lon can give 1 mile
precision. See Dayton map at right.

- XXXYYY gives positions to the nearest 500’
over a 100 mile grid area

- XXXYYY gives positions to the nearest 50’ over
a ten mile grid area, (GPS resolution)

- NNNNNc can report a runner code “c” for any marathon runner etc
- MMmS can report Status at any tenth of a mile mark in a Marathon
- TTTSSS can report the troop number and score during a jamboree

8

The applications of APRStt are as many and as varied as ham radio itself when there is specific
data that needs to be quickly and accurately reported. And any code can be invented for any
purpose because all local events are local. Once the code is received at the local APRStt engine,
the code is converted to normal APRS packet so that everyone at the event with APRS can see
what is going on, and since the APRS-IS then distributes that data worldwide, there is no limit to
what can be done.

'**|
'*** PSAT2 list of FLIGHT Messages 18 Nov 2015|
'**|
DTMF messages are sent in 16 key strings starting with the "C", ending in #
BxxMMCCCCCCkkkk# Where CCCCCCkkkk are your callsign keys and key code or
CMMxxCCCCCCkkkk# Where CCCCCCkkkk are your callsign keys and key code and
MM is the message number below and xx is a modifier number spoken in place
of __
Note: Wierd spellings attempt to get the voice on PSAT2 to sound better

'**|
'* ARL Emergency Standard Messages 18 Nov 2015|
'**|
01 Everyone is safe, Do not worry.
02 I am Coming home as soon as posseble.
03 In hospetal, Receiving care and recovering.
04 Only slight property damage here, Do not worry.
05 I am moving to a new location, Will make contact then.
06 Will contact you as soon as possible.
07 Please reply by Amatur Radio.
08 Need additionel radio equipment for emergency use.
09 Additionel _ radio operators needed.
10 Please standby for further information.
11 Establish Amatur Radio contact on _ meeters.
12 Ankchus to hear from you.
13 Medicel emergency sit uation egsits here.
14 Sit uation here is worsening and becoming criticel.
15 Please adv eyeze your condition and what help is needed.
16 Property damage is very significant.
17 RE ACT communications are on channel _.
18 Please contact me as soon as posseble.
19 Request halth and welfare report.
20 Temporarily stranded, Will need some assistance.
21 Serch and Rascue assistance is needed.
22 Need accurate information on conditions at your location.
23 Report accessebility and best way to reach your location.
24 Evacuation of razidents from here is urgently needed.
25 Please adv eyeze weather conditions at your location.
26 Need help and care for evacuation of sick and injured.
27 Hi, This was Dove in spaice, anni verse air E
28 There are _ of us here.
30 Marytime Emergency Code number _.
31 We are operating on emergency power.
32 We are operating on sowlar power.
33 This is a voice test.

9

'**|
'* ARL GENERAL Standard Messages 18 Nov 2015|
'**|
40 Q S L, your number _, my number is %. (% is the next number 'CQ msg
41 Q S L, your C Q number _. 'CQ msg
42 Q S L, your C Q number _ and thanks for the contact. 'CQ msg
43 Go Navy, beet Army!. '''
44 Navy Beets Army by _. ''
45 I am _ years old.
46 Greetings on your berthday. 'birthday to bertday
47 Got your message number _.
48 I am in school grade _. ''
49 Celebrating _ munths in spaice.
50 Greetings by Amatur Radio. 'Amateur to Amatur
51 Am having a wonderful time.
52 Really enjoyed visiting with you.
53 Received your package, Thank you.
54 Many thanks for your good wishes.
55 Very delighted to hear your good newze.
56 Congratulations on your worthy achievement.
57 Wish we could be twog ether.
58 Have a wonderful time, Let us know when you return.
59 Congratulations on the new arrivel, Hope all are well.
60 Wishing you the best.
61 Wishing you happy holidays and New Year.
62 Greetings and best wishes for the holiday season.
63 Our best wishes are with you, Hope you win.
64 Arrived safely at _ hours.
65 Please meet me on arrival at _ hours.
66 D X Q S Ls are on hand at the Q S L Bureau.
67 Your message _ is undelivereble.
68 Best wishes for a speedy recovery.
69 Welcome, We hope you will enjoy the fun and fellowship.
70 Call me ON my cell at _ Oh clock.
71 No cell phone service here.
72 My Cell phone battery is dead.
73 Greetings from AMSAT, Keeping ham radio in spaice fo _ years.
74 My Cell phone charging opportunitees are limited.
75 Call my cell phone on the hour.
76 My Radio power charging capabilities are limited.
77 My next contact time will be in _ minutes.
78 My next contact time is tomorrow.
79 Please send items number _.
80 I am on schedule.
81 I may be delayed by _ hours.
82 I may be delayed by _ days.
83 I may be earlyer by _ hours.
84 I May be earlyer by _ days.
85 I may quit earlyer by _ stops.
86 I may go further by _ stops.
87 We are camping and enjoying it greatly.
88 Sending love and kisses!.
89 Contact me on the _ meeter band.
90 There are _ of us here.
91 Celebrating _ weeks in spaice.

10

Extending D-STAR with Codec 2

Antony Chazapis, SV9OAN
Heraklion, Crete, Greece

chazapis@gmail.com

Abstract – D-STAR was the first digital voice system designed by radio amateurs specifically for ama-
teur radio use. However, it relies on a proprietary, patented codec, which has been the subject of con-
troversy among amateur radio operators and regulatory authorities. In this paper, we present a proto-
col extension, that enables the optional use of Codec 2 in voice streams – an open-source and patent-
free alternative to the default codec. The "D-STAR vocoder extension" has been implemented in a
series of accompanying, open-source software projects, which focus on seamless interoperability with
current D-STAR deployments. Transcoding voice streams between codec variants is possible with a
custom version of the popular xlxd reflector. In addition, we introduce Estrella, a software-only, ra-
dio-like desktop and mobile application, for over-the-network communications.

1. Introduction

Digital Smart Technologies for Amateur Radio (D-STAR) is a digital voice and data standard designed
for amateur radio use [1, 2, 3]. The research leading to the original specification [4], published in 2001,
was funded by the Japanese government and led by JARL, in a joint effort with Japanese radio equip-
ment manufacturers. D-STAR digital voice transmissions require less bandwidth than analog FM and
provision a small percentage of the stream to be used for arbitrary data, like text messages or GPS in-
formation. D-STAR repeaters may have modules in several bands (most commonly VHF and UHF) and
are capable of forwarding streams from one band to another, or through a special "gateway" module
which "links" the repeater to some other Internet-based endpoint. Digital voice, once picked up by a re-
peater or a "hotspot" (a local, low-power, radio-to-Internet gateway), can be easily relayed over the net-
work to other physical or virtual repeaters (called "reflectors"), allowing users to participate in pre-estab-
lished or ad hoc worldwide talk groups [5, 6].

However exciting new technologies may be – especially to amateur radio operators, D-STAR was re-
ceived early on with mixed reviews. Two were the most prominent causes of criticism: the availability of
products from a limited set of manufacturers at a relatively high price point, and the use of a closed-
source, proprietary codec for compressing raw, digitized voice into a low-bitrate stream and vice versa.
Both points are still valid – almost 20 years after the introduction of the standard.

Most of the D-STAR equipment available is manufactured by ICOM, Inc., which almost solely supports
and promotes D-STAR technology [7, 8] (actually, "D-STAR" is an ICOM registered trademark). And

11

while the protocol defines the packaging and modulation details, it does not define the format of addi-
tional data inside voice streams, routing protocols, and other relevant extensions that are necessary to
support end-to-end D-STAR network deployments and associated applications. ICOM uses proprietary
implementations of several D-STAR functions [9, 10], which throughout the years have been reverse-
engineered, in order to enable building custom D-STAR radios, repeaters [11], and even faster and more
efficient routing mechanisms [12, 13]. The current ability of D-STAR to support such a variety of con-
figurations and transparently bridge to other digital voice systems (like DMR and System Fusion), has
been largely driven by a large collection of open-source software and hardware, supported by a vibrant
community of amateur radio operators, repeater builders/maintainers, and hardware homebrewers, that
continuously devise and implement innovative solutions (a wealth of historical information is included
in [14], while early practical examples are shown in [15, 16])

The result of this effort is that a fully operational D-STAR network backbone (repeaters, reflectors, as
well as routing and bridging functions) can now be completely implemented using open software, run-
ning on low-cost, commodity devices. However, this is not the case with end-user radios. The propri-
etary codec used by D-STAR, which is available in the form of a hardware chip, renders do-it-yourself
radios very difficult to construct. While there have been some software implementations that interface
with a chip attached via USB on a remote machine over the network (like DVTool [17] or BlueDV [18]),
users mostly prefer the convenience of a self-contained hardware radio – still with a limited choice of
options at relatively high price points.

Advanced Multi-Band Excitation (AMBE), the codec used by D-STAR, was initially selected by the de-
signers as the only practical option available at the time. There has been some discussion on what will
happen when the respective patent held by Digital Voice Systems, Inc. will expire (if it is actually valid
and has not already [19]), however an open implementation would also require a significant amount of
information made publicly available by the company, which is most probably unexpected. In practice,
variations of the AMBE codec are used in most well-known contemporary digital voice modes, so the
codec selection is no longer a source of strong dispute; the proprietary codec issue has even resulted in a
government ban of the mode all together in France. An alternative to AMBE, Codec 2, has been avail-
able for some time now. Codec 2 is open-source and patent-free, capable of compressing speech to very
low bit-rates [20]. Moreover, it has already been used in amateur radio applications, most notably as an
integral part of FreeDV, a digital voice mode for HF [21].

In this paper, we present a protocol extension to enable the optional use of Codec 2 instead of AMBE in
D-STAR communications. The possibility of such an implementation had been discussed in the past
[22], but – to our knowledge – had never been realized. The open source codec, will hopefully address
both aforementioned issues, enabling the emergence of affordable, easy-to-build D-STAR radios, cover-
ing a wide spectrum ranging from software-only solutions connecting directly to reflectors, to complete-
ly independent hardware devices. Having D-STAR endpoints with no hardware requirements may also

12

allow an entirely new range of network-based applications, either stand-alone, or as interfaces to exist-
ing, external systems.

The changes to the protocol, along with their implications, are discussed in detail in the following chap-
ter. In summary, a currently unused header flag is employed to mark the codec type in voice frames. This
work is not meant to replace current D-STAR deployments, but augment them in a fully compatible way.
To this end, we have implemented a reflector (based on xlxd [23]) that is capable of transcoding between
AMBE and Codec 2 streams. The reflector is part of a series of extension-compatible, open-source soft-
ware solutions, which also includes a set of command line utilities to experiment with the extension and
a software-only client, called "Estrella", available in desktop and mobile versions.

2. Design

The D-STAR protocol specification defines the bit framing used to transmit either data or voice streams.
Each stream begins with a synchronization pattern, followed by a header, and – in the case of voice
communications – a variable number of alternating voice and data frames (Fig. 1) [24].

Figure 1: Overview of a D-STAR voice stream

The header, which is 328-bits long carries primarily addressing and routing information: who is sending
the stream, where it is headed, through which repeater or gateway, etc. (It is actually coded into 660 bits
when transmitted, after bit interleaving and scrambling.) Except callsigns and 2 trailing bytes for the
checksum, the header also includes 3 distinct 1-byte long "flags" for identifying the type of communica-
tion, triggering control functions, and – what is of particular interest here – protocol expansion. Specifi-
cally, "Flag 3" has by default all 8 bits set to zero; any other value is undefined and left for future use.

The 72-bit long voice frames carry the data from the AMBE codec, while the 24-bit long data frames
which are interleaved between them, help in synchronization and are commonly used to provide redun-
dant copies of the header, text messages, and other information, like sender location. The AMBE codec
encodes speech at 3600 bps, including error-correction information. Thus, each 72-bit voice frame (9
octets) corresponds to exactly 20 ms of voice. No other bits in the D-STAR stream are relevant to voice
information.

... ...

Flag 2 Flag 3 Dst. Rpt. Call.Flag 1

Header Voice Data Voice Data Voice Data

CRCDpt. Rpt. Call. Comp. Call. Own Call. 1 Own Call. 2

8 8 648 1664 64 64 32

328 72 24 72 24 72 24 bits

13

In the following paragraphs, we will present in detail how the unused bits of Flag 3 can be exploited in
order to extend the D-STAR protocol with Codec 2 support. We propose setting specific bits in Flag 3 to
signify different content types of the voice frame. Two variants are supported: one with higher voice
quality but no forward error correction (FEC), and another one with slightly higher voice compression,
but with additional error-correction data piggybacked at the end of each encoded voice chunk.

2.1. D-STAR vocoder extension

The "D-STAR vocoder extension" uses the Flag 3 byte of the header, to mark the vocoder type in the
voice frames as follows (in accordance to section 2.1.1, page 4, of the D-STAR specification):

Table 1: Possible values of Flag 3 with the D-STAR vocoder extension

Toggling the least-significant bit of Flag 3 switches between backwards-compatible AMBE mode and
the new Codec 2-based voice frames. A second bit controls the bitrate of the codec and the presence of
FEC.

Codec 2 has several modes, the highest bitrate one working at 3200 bps – a close match to 3600 bps.
Note, however, that the Codec 2 algorithm only provides speech processing and the resulting stream
does not include any error-correction. 20 ms of voice in Codec 2 3200 mode require 64 bits (8 octets),
which fit in the 72-bit space available, but do not leave much space for implementing FEC. The next
available Codec 2 mode, which operates at 2400 bps, requires just 48 bits (6 octets) to encode a speech
waveform of equal duration, which leaves an adequate amount of bits free, to protect the first 24 bits of
the voice data with two applications of the (23, 12) Golay code. Each application produces an additional
11 bits that are used for error correction at the receiving side, raising the grand total of voice-related bits
to 70; 2 short of the space available. (In practice, Codec 2 2400 mode also has 2 spare bits, so the trans-
mission really requires 68 bits.)

This technique of employing FEC, is similar to what is implemented by FreeDV, a digital voice mode
built upon Codec 2: FreeDV 1600 mode uses Codec 2 1300 mode to encode 40 ms of speech to 52 bits
of voice data and then applies a (23, 12) Golay code to protect a 12-bit selection of those 52 bits. In
Codec 2-encoded voice samples, some bits are more "important" than others. In the context of the im-
plementation discussed here, it has been decided to apply the Golay code to the the first 24 bits of the

Bit Meaning Function

0000000x Vocoder 0: AMBE (backwards compatible)
1: Codec 2

000000x1 Mode 0: Codec 2 3200 (160 samples/20 ms into 64 bits)
1: Codec 2 2400 (160 samples/20 ms into 48 bits) plus FEC (22 bits)

00000100 to 11111111 Undefined Use for future expansion

14

resulting data chunk encoded with Codec 2 2400 mode, which contains all the voicing and pitch/energy
bits, plus the first 14 bits of harmonic magnitudes (Line Spectrum Pairs – LSPs).

2.2. Discussion

The proposed protocol extension is backwards compatible, so traffic using Codec 2 will pass through
current D-STAR hardware (repeaters, hotspots, etc.) and software (repeater controllers, reflectors, etc.).
Of course, hardware transceivers with AMBE chips are incompatible and cannot be used to directly
communicate with Codec 2 extension implementations.

Interoperability between vocoder modes can be established using Internet-based D-STAR reflectors, in a
similar fashion that they are currently being widely used to transcode and bridge between D-STAR,
DMR, and System Fusion. In particular, in the next chapter we will discuss how xlxd, which is the most
widespread software used in this setup, has been extended to allow transparent communications between
AMBE-based devices and Codec 2-based, software-only clients. Note that although early tests have con-
firmed that xlxd is indeed compatible to pass through Codec 2-based transmissions without any changes,
we have selected to apply a different connectivity setup for clients that support the extension (on a dif-
ferent UDP port using the familiar DExtra protocol [25], which has been named "DExtra Open"), in or-
der to avoid user confusion and establish a fully compatible path for trouble-free adaptation of the new
mode. Codec 2-based clients are thus "isolated" from their AMBE-only counterparts and respective
streams are properly transcoded in order to allow cross-codec interaction.

The wide-spread use of Internet-based digital voice, primarily in the form of talking through hotspots,
but also via desktop/mobile applications – like DVTool/BlueDV, is the main reason it has been decided
to allow selecting between the 2 variants of Codec 2. For over-the-Internet communications, FEC is not
really necessary, as malformed UDP packets – however rare – are dropped by the networking layer and
never reach the application. It is therefore advised to always use Codec 2 3200 mode in such setups and
enjoy the slight increase in voice quality.

In fact, we expect that dropping the AMBE codec from the protocol, hence the requirement of interfac-
ing with a hardware chip, will allow a new generation of software-only clients to be implemented. Such
desktop or mobile clients could directly communicate with each other, but to keep up with the usage
paradigm of current radio-based transmissions, they will probably connect to some centralized "hub" (a
reflector), that will allow broadcasting voice streams to all directly or indirectly linked users. In the next
chapter, we also present Estrella, a D-STAR software implementation that allows communicating
through existing reflectors without the need of any AMBE hardware.

The open source codec, may also allow home-brewing transceivers using a Rasbperry Pi, and an at-
tached radio, either in the form of a directly connected HAT (Hardware Attached on Top) [26], or an
MMDVM modem [27] (even one constructed with through-hole components [28]) interfaced to a "tradi-
tional", analog radio. The necessary software could run on the Raspberry Pi itself, assuming a method to

15

attach a microphone and speaker, or – more likely – on a mobile device running an Estrella variation that
instead of transmitting streams directly over the Internet, sends them to the Raspberry Pi over Bluetooth
(and vice versa), using an established D-STAR over-the-network protocol like DExtra. Such a setup,
which has the user interface separate from the radio instance, may allow a variety of interesting, interop-
erable implementations, that may in turn cover a multitude of different usability and physical deploy-
ment requirements.

3. Implementation

The D-STAR vocoder extension has been implemented in three separate, but interoperable, projects:
• pydv: A Python library and an associated set of executable command-line utilities to interface with D-

STAR reflectors and transcode saved voice streams, either locally, or using the transcoding server
employed by xlxd (ambed).

• chazapis/xlxd: A "fork" of the leading software used to implement D-STAR reflectors, enhanced with
the ability to recognize and transcode Codec 2-based streams to AMBE and vice versa when the ap-
propriate hardware is present. Used as a communications hub for D-STAR software clients imple-
menting the extension and a bridge between such clients and devices (repeaters or hotspots) serving
AMBE-only transceivers.

• Estrella: A software-only D-STAR application that implement Codec 2-based communications via a
compatible reflector (like the aforementioned xlxd fork). Estrella is available for macOS and iOS,
while an Android version is in the works.

All the projects above are open source (licensed under GPL) and freely available at GitHub [29, 30, 31,
32]. Further details for each are presented in the following paragraphs.

3.1. pydv

The pydv project was originally developed as a loose collection of code to assist in the early stages of
development of the extension. Now – at version 2.0 – it provides Python interfaces to manage DExtra
and DPlus connections, convert from network data to D-STAR streams and vice versa, save and load
such streams to/from .dvtool files [33], as well as encode and decode voice data using Codec 2 or
AMBE (decode only via mbelib [34]), and transcode via a compatible ambed server (included in chaza-
pis/xlxd).

The following command-line executables are included:
• dv-recorder, which connects to a reflector and records traffic in .dvtool files
• dv-player, which plays back a .dvtool file to a reflector
• dv-encoder, which converts a .wav file to a .dvtool file using the Codec 2 vocoder
• dv-decoder, which converts a .dvtool file using any vocoder to .wav
• dv-transcoder, which connects to an ambed server and converts a .dvtool file using the AMBE

vocoder to a .dvtool file using the Codec 2 vocoder and vice versa

16

These utilities can prove useful to anyone experimenting with D-STAR in general. As a library, pydv
may support higher-level applications that require D-STAR reflector connectivity using any of the sup-
ported protocols. pydv is written in Python 2.7. Future work includes porting it to Python 3, as well as
implementing more digital voice network protocols.

3.2. chazapis/xlxd

xlxd is the most modern D-STAR reflector software. In essence, the function of a reflector is simple: it
provides network protocol handlers for clients to connect and submit digital voice streams to specific
"modules" (connection contexts, virtual "rooms"). The reflector relays each stream, in real time, to any
client connected via any protocol to the same module. Some reflectors can even connect as clients to
other reflectors, organizing the network traffic in cross-country or cross-continent meshes, and enabling
ad hoc linking of talk groups together based on group-specific policy and habits [35].

There are various already established D-STAR network protocol variants. xlxd implements them all,
thus allowing interoperability between them. As such, it can be deployed as either a DPlus, DExtra, or
DCS-compatible reflector, using REF, XRF, or DCS callsign prefixes respectively (or all of the above
simultaneously). By advertising a reflector installation to the appropriate callsign-to-IP resolution reg-
istries, clients can use standard D-STAR commands to establish repeater/hotspot links to the reflector.
Moreover, xlxd introduces the notion of cross-reflector "trunks" (using the XLX protocol), which con-
vey the streams of many modules simultaneously, in practice "extending" part of one reflector from one
installation to another. A group of linked reflectors is commonly called a "constellation".

Recently, xlxd has also been interfaced to similar DMR network structures, like the BrandMeister net-
work [36]. DMR uses a variant of AMBE to encode/decode speech in transceivers, so the streams run-
ning through xlxd in that case are not directly compatible with D-STAR. To cross codec barriers, a sec-
ondary software service called ambed, provides transcoding between the two formats. ambed requires
the presence of one or more hardware chips to decode data from one AMBE variant into voice and en-
code it into the other. AMBE chips may have one or more channels; at least two are required to
transcode a stream in real time.

Given the success and momentum of xlxd, as well of the eagerness of its developers to support any new
and exciting technologies in the digital voice arena, it seemed as the perfect candidate to base the im-
plementation of the D-STAR vocoder extension interoperability with other modes. As discussed, be-
cause of the extension's backwards compatibility, xlxd could be deployed as-is to support Codec 2-based
clients using any existing D-STAR network protocol, but such an arrangement would magnify incompat-
ibility issues. Instead it was decided to work first – before even starting implementing clients – in the
direction of providing a unified substrate for codec-independent communications.

To this end, the xlxd/ambed project was forked and patched as necessary to transcode and bridge voice
streams of any existing format to the new extension. The solution implements an additional DExtra lis-

17

tener on a different port (30201 instead of 30001). The new port is to be used by reflectors with the
"ORF" callsign prefix (Open ReFlector). Any client connected to an ORF reflector will receive streams
encoded with Codec 2. All other protocol handlers will still send out data encoded with AMBE. Note
that the protocol/port only affects data transmitted by the reflector. The stream codec is recognized by all
protocol handlers, so a client can still transmit data using any codec on any port. The rationale behind
this is that DExtra links may be used by repeaters or other reflectors, so it is not really possible to know
what their clients support. So, nothing will change when linking a repeater to an XRF reflector, but will
do when linking to an ORF one. The new port endpoint has been named "DExtra Open" to distinguish it
from the protocol running on the default DExtra port.

A detailed outline of the code changes done is attached to the pull request that has been submitted up-
stream, so the work will eventually be included into future versions of xlxd. In summary, most of the
effort was concentrated into ambed, so each "vocodec" channel will function with three interfaces (1 in/
2 out, instead of 1 in/1 out). Each such channel now has a (virtual) Codec 2 interface attached, along
with the two physical ones for AMBE. When a new incoming stream presents itself, the appropriate
transcoding channel is selected depending on the input codec. Channels are grouped together in triplets.
Each group contains all possible permutations of respective interfaces – three channels, while only one
channel from each group can be used at a given time. Groups represent hardware resources that cannot
be shared between streams; channels represent input/output configurations. The rest of the work in-
volved interfacing xlxd to the new "1 codec in, 2 codecs out" ambed interface, the new DExtra Open
protocol listener on port 30201, etc. xlxd and ambed are written in C++.

The latest version of chazapis/xlxd is currently running at XLX393/XRF393 [37], which is deployed on
a Raspberry Pi and supports transcoding a single stream at a time by employing two DVMEGA DV-
stick30 USB interfaces (Figure 2). Operation is not restricted in any way, and it can be freely used for
testing and experimenting with new digital voice technologies. XLX393/XRF393 is also reachable via
DMR, through TG20209 of the BrandMeister network.

Future work includes deploying an ORF registry to track corresponding reflector deployments. The ORF
registry will be useful for Codec 2-based software clients, in order for them to display compatible and
available servers for connecting to. Assuming Codec 2-based D-STAR hardware devices at some point,
the ORF registry may also tie in to repeater/hotspot software (like the ircDDB Gateway), to enable rout-
ing respective linking requests to the appropriate DExtra Open network endpoints.

18

Figure 2: XLX393/XRF393 current hardware setup

3.3. Estrella

Estrella is a radio-like software-only client for DExtra Open reflectors. Two platform variations have
been implemented: a desktop-compatible macOS version and a mobile-friendly iOS one. Both use a
similar user interface and aim for a very simple user experience: the user enters the connectivity details
(callsign and ORF network endpoint), and is then presented with a minimalistic screen showing the con-
nection status and providing a PTT button to initiate transmissions (Figures 3, 4). Although direct client-
to-client connections could be possible, it has been decided to only support reflector-based setups, in or-
der to match as close as possible the practice of using a "traditional" RF radio transceiver, encourage the
deployment of new reflector software that complies with the proposed vocoder extension, and foster an
environment of interoperable cross-codec digital voice applications and devices. As mentioned, with
chazapis/xlxd installed and the appropriate hardware, the reflector will handle transcoding and bridging
streams of different types and protocols.

Estrella implements the D-STAR vocoder extension and uses a linked Codec 2 library to encode and de-
code D-STAR communications without the need of any external hardware. macOS and iOS versions are
both are written in Objective-C, and share a significant amount of code that is abstracted into 2 libraries
(called Frameworks in Objective-C nomenclature) [38, 39]:
• CocoaDV, a Cocoa Framework to manage DExtra connections to D-STAR ORF reflectors
• CocoaCodec2, a Cocoa Framework for the Codec 2 low bit-rate speech codec

CocoaCodec2 bundles the source code of the Codec 2 SVN repository in an Xcode-friendly format. (de-
tails on how this was accomplished are given at its GitHub page). CocoaCodec2 is used by CocoaDV,

19

which in turn provides the necessary network and digital voice stream abstractions to Estrella. The result
is that the core Estrella implementation only needs to concentrate on graphical user interface elements,
handling connectivity events, stream buffering, and managing the available audio hardware. Actually, as
the macOS and iOS core libraries have similar APIs, the respective Estrella codebases are also very sim-
ilar.

Figure 3: Estrella’s main window (macOS version)

Figure 4: Estrella’s main window (iOS version)

Current plans include completing the Android variation of Estrella and releasing all binary forms on cor-
responding online distribution services (a binary macOS version is already available for download at
GitHub). Future versions may present a simpler user interface for configuration, by integrating server
selection with the ORF registry, and incorporate text messaging and D-PRS functionality (exchanging
positional data and presenting it on a map, as done by APRS [40]).

20

4. Conclusion

In this paper, we have described the design and implementation of an extension to the D-STAR protocol
that uses Codec 2 for voice communications, instead of – or alongside – AMBE. We hope this work to
become a significant milestone in D-STAR evolution, as it enables the development of completely open
end-user radios and services, seamlessly interoperating with any current deployments. Moreover, the
method used here can support other, similar D-STAR extensions, in order to introduce new voice codecs,
or other, more radical changes to the stream structure.

In practice, in nearly 20 years of existence, D-STAR has already evolved in many ways. However, the
available protocol specification does not include many details that are now considered de facto. Back
then, it was decided to leave out some implementation specifics: the structure of text messages or loca-
tion information included in voice streams, the routing techniques and associated callsign discovery
methods, the format of streams when relayed over the network, etc. Many of these functions have been
implemented in proprietary extensions, that – although mostly reverse-engineered – are for obvious rea-
sons poorly documented. Discovering how D-STAR radios, repeaters, gateways, and reflectors work is a
formidable task, as anyone interested can only find information in scarce Internet resources – that may
vanish at any point – or deep into the codebase of related software projects. This unfortunate fact, nei-
ther matches the open nature of amateur radio, nor aligns to the (presumably) original intention of the D-
STAR design group: to publish an open document that will provide the basis of cooperation and interop-
erability between radio amateurs and equipment manufacturing companies.

Adoption of digital radio technologies is growing larger every year, so D-STAR is now more relevant
than ever. Both as a standard for digital radio transmissions, and as the foundation of an Internet-based,
worldwide communication network for amateur radio. Sooner rather than later, JARL – or any other big
and respectable amateur radio association – should convene a new standards body to release a revised,
modern D-STAR standard, documenting established usage of the protocol and providing new directions
for the future. If that ever happens, hopefully an open voice codec will indeed be an option – either the
one presented here, or any other patent-free solution; in the true spirit of amateur radio.

Acknowledgements – This work would not even be possible without the tremendous effort David Rowe,
VK5DGR, has put into creating and maintaining Codec 2. David was also kind enough to discuss as-
pects of this project with me when I contacted him, asking for suggestions on how to move forward with
FEC implementation. D-STAR would never reach the momentum it has today without the software writ-
ten by Jonathan Naylor, G4KLX, Jean-Luc Deltombe, LX3JL, and many others. Their code served as an
invaluable resource of knowledge – an insight into D-STAR and digital voice in general. I express my
personal gratitude to all, as well as Bruce Perens, K6BP, for always trying to steer the world in the right
direction.

21

Notes – D-STAR is a registered trademark of ICOM, Inc. AMBE is a registered trademark of Digital
Voice Systems, Inc.

References

[1] John Gibbs, KC7YXD, "D-STAR: New Modes for VHF/UHF Amateur Radio, Part 1", QEX, Jul/Aug
2003, p. 30–34. http://www.icomamerica.com/en/downloads/DownloadDocument.aspx?Document=604
[2] John Gibbs, KC7YXD, "D-STAR, Part 2: Design Considerations", QEX, Sept/Oct 2003, p. 22–28.
http://www.icomamerica.com/en/downloads/DownloadDocument.aspx?Document=605
[3] John Gibbs, KC7YXD, "D-STAR, Part 3: Implementation", QEX, Noc/Dec 2003, p. 42–47. http://
www.icomamerica.com/en/downloads/DownloadDocument.aspx?Document=606
[4] "D-STAR System". https://www.jarl.com/d-star/shogen.pdf
[5] Toshen M. Golias, KEØFHS, "Amateur Radio Notes: Diving into D-STAR", https://amateurra-
dionotes.com/d-star.htm
[6] Toshen M. Golias, KEØFHS, "Amateur Radio Notes: Hanging out with hotspots", https://amateurra-
dionotes.com/hotspots.htm
[7] ICOM, Inc., "D-STAR System Introduction". http://www.icomamerica.com/en/downloads/Down-
loadDocument.aspx?Document=447
[8] ICOM, Inc., "D-STAR. For the Second Century of Amateur Radio". http://www.icomamerica.com/
en/downloads/DownloadDocument.aspx?Document=366
[9] Peter Loveall, AE5P, "D-STAR Uncovered", Proceedings of the 27th ARRL and TAPR Digital Com-
munications Conference, Sept 2008. https://www.tapr.org/pdf/DCC2008-D-STAR-AE5PL.pdf
[10] Jonathan Naylor, G4KLX, "The Format of D-Star Slow Data". https://www.qsl.net/kb9mwr/
projects/dv/dstar/Slow%20Data.pdf
[11] Jonathan Naylor, G4KLX, "g4klx/DStarRepeater: The D-Star Repeater.", https://github.com/g4klx/
DStarRepeater
[12] "ircDDB". http://db0fhn.efi.fh-nuernberg.de/doku.php?id=projects:dstar:ircddb
[13] Jonathan Naylor, G4KLX, "g4klx/ircDDBGateway: The ircDDB Gateway for D-Star", https://
github.com/g4klx/ircDDBGateway
[14] Steve Lampereur, KB9MWR, "Digital Voice applications and Ham Radio". https://www.qsl.net/
kb9mwr/projects/dv/plan.html
[15] John Hays, K7VE, "D-STAR for the Technically Curious", Presentation at the 29th ARRL and
TAPR Digital Communications Conference, Sept 2010. https://www.tapr.org/pdf/DCC2010-D-STAR-
technical-K7VE.pdf
[16] Mark Braunstein, WA4KFZ, "Introduction to D-STAR Basics", Presentation at the 30th ARRL and
TAPR Digital Communications Conference, Sept 2011. http://www.tapr.net/pdf/DCC2011-Intro_to_D-
Star-Mark_Braunstein_WA4KFZ.pdf
[17] "DV Dongle". http://www.dvdongle.com

22

[18] "BlueDV". https://www.pa7lim.nl/bluedv/
[19] Bruce Perens, K6BP, "AMBE Exposed", Presentation at the 33rd ARRL and TAPR Digital Commu-
nications Conference, Sept 2014. https://www.qsl.net/kb9mwr/projects/dv/codec/AMBE_Exposed.pdf
[20] David Rowe, VK5DGR, "Codec 2 - Open Source Speech Coding at 2400 bit/s and Below", Pro-
ceedings of the 30th ARRL and TAPR Digital Communications Conference, Sept 2011. http://www.-
tapr.net/pdf/DCC2011-Codec2-VK5DGR.pdf
[21] "FreeDV: Open Source Amateur Radio Voice". https://freedv.org
[22] Bruce Perens, K6BP, and David Rowe, VK5DGR, "Codec2: An Open Future for Digital Voice",
Presentation at the 29th ARRL and TAPR Digital Communications Conference, Sept 2010. https://www.-
tapr.org/pdf/DCC2010-Codec2-presentation-K6BP-VK5DGR.odp
[23] Jean-Luc Deltombe, LX3JL, "LX3JL/xlxd: HAM radio multiprotocol dstar reflector server". https://
github.com/LX3JL/xlxd
[24] Denis Bederov, DL3OCK, "DSTAR radio frame structure in DV mode". http://db0fhn.efi.fh-nuern-
berg.de/lib/exe/fetch.php?media=projects:dstar:ircddb:dstar_dv_frame3_en.pdf
[25] Steve Lampereur, KB9MWR, "D-Star Open Source / Dextra project by Scott Lawson, KI4LKF".
https://www.qsl.net/kb9mwr/projects/dv/ki4lkf/ki4lkf.html
[26] Mathis Schmieder, DB9MAT, "mathisschmieder/MMDVM_HS_Hat: MMDVM_HS Hat for the
Raspberry Pi (Zero)". https://github.com/mathisschmieder/MMDVM_HS_Hat
[27] Jonathan Naylor, G4KLX, "g4klx/MMDVM: The firmware for the MMDVM (Multi-Mode Digital
Voice Modem)". https://github.com/g4klx/MMDVM
[28] Florian Wolters, DF2ET, "Handcrafted MMDVM Adapter", https://www.florian-wolters.de/blog/
2016/02/25/handcrafted-mmdvm-adapter/
[29] Antony Chazapis, SV9OAN, "chazapis/pydv: D-STAR library and utilities in Python". https://
github.com/chazapis/pydv
[30] Antony Chazapis, SV9OAN, "chazapis/xlxd: HAM radio multiprotocol dstar reflector server".
https://github.com/chazapis/xlxd
[31] Antony Chazapis, SV9OAN, "chazapis/Estrella-macOS: ORF reflector client for macOS". https://
github.com/chazapis/Estrella-macOS
[32] Antony Chazapis, SV9OAN, "chazapis/Estrella-iOS: ORF reflector client for iOS". https://github.-
com/chazapis/Estrella-iOS
[33] Kristoff Bonne, ON1ARF, "Format of files and UDP-streams used on D-STAR". https://qsl.net/
kb9mwr/projects/dv/dstar/formats%20of%20files%20and%20UDP-streams%20used%20on%20D-
STAR.pdf
[34] "szechyjs/mbelib: P25 Phase 1 and ProVoice vocoder". https://github.com/szechyjs/mbelib
[35] Bob Scott, W6KD, "Reflections on Reflectors". https://qsl.net/kb9mwr/projects/dv/dstar/Reflec-
tions%20on%20Reflectors%201.02.pdf
[36] "BrandMeister". https://brandmeister.network

23

[37] "XLX393 Multiprotocol Gateway". http://reflector.rasc.gr
[38] Antony Chazapis, SV9OAN, "chazapis/CocoaDV: Cocoa Framework for D-STAR". https://github.-
com/chazapis/CocoaDV
[39] Antony Chazapis, SV9OAN, "chazapis/CocoaCodec2: Cocoa Framework for Codec 2". https://
github.com/chazapis/CocoaCodec2
[40] Peter Loveall, AE5PL, "APRS and D-STAR = D-PRS", Proceedings of the 26th ARRL and TAPR
Digital Communications Conference, Sept 2007. https://www.tapr.org/pdf/DCC2007-D-PRS-AE5PL.pdf

About the author

Antony Chazapis, SV9OAN, is licensed since 2009. He is a member of
RAAG, RASC, ARRL, and the volunteer group HARES (Hellenic Amateur
Radio Emergency Service). Since 2017, he has been serving as the Association
Manager for the SOTA award program in Greece. Antony enjoys DXing, con-
testing and exploring what makes digital modes tick. He is the author of Pock-
etPacket, an APRS client application for macOS and iOS. His work on D-
STAR includes Estrella, an open-source, software-only radio for macOS and
iOS, and associated server software and utilities, that enable D-STAR commu-
nications using Codec 2. He holds a PhD in Computer Science and is currently
employed by a Toronto-based tech startup implementing bleeding-edge storage
solutions.

24

IPV6 FOR AMATEUR RADIO

DANIEL ESTÉVEZ, EA4GPZ / M0HXM

Abstract. Amateur radio operators have allocated the IPv4 AMPRNet block 44.0.0.0/8. This is

routinely used to support several operational networks and experiments, such as the Hamnet. With
the increasing exhaustion of IPv4 address space and the goal of using and advancing state-of-the-art

technology, it seems appropriate to start using IPv6 for this kind of Amateur activities. This paper

gives a proposal of how to distribute IPv6 globally routable address space for Amateur radio use. We
also explain some of the advantages of using IPv6, in comparison to the current IPv4 scheme.

1. Introduction

Currently, Amateur radio operators have the IPv4 AMPRNet [1] block 44.0.0.0/8 allocated for use in
all kinds of Amateur radio related activities, such as organizing computer networks which run partially
or completely over radio frequency links, and partially over the internet, or doing research and experi-
mentation related to TCP/IP networking. An example of a large network running over the AMPRNet
allocation is Hamnet [2].

This large /8 block of IPv4 address space represents more than enough to cover the necessities of all
the projects that have emerged, both now and for the forseable future. However, managing and using
this IPv4 address space is not exempt of inconveniences, which in the author’s opinion could be solved
by using IPv6 addressing instead.

First of all, Amateur radio operators are required by the ITU Radio Regulations to identify their own
transmissions with their callsign. An IPv4 network for Amateur radio should have a way to map IPv4
addresses to Amateur radio callsigns, since packets can eventually be routed through radio frequency
links. However, IPv4 does not provide a good solution to this problem.

Currently, this is solved in an ad-hoc manner in most cases. The endpoints of a radio frequency
link comply with the regulations by broadcasting their own callsign periodically, often piggybacking
this information onto an existing discovery protocol such as CDP [3]. While this may seem enough to
comply with the regulations, it is often impossible to identify which callsign originated a packet that is
being routed through a radio frequency link. The only data at hand is the IPv4 source address, and
it is only possible to map it into a callsign using an online database such as HamnetDB [4] in limited
circumstances.

On the other hand, IPv6 provides an elegant way of mapping addresses onto Amateur callsigns. The
128 bit address length of IPv6 is so large than in many applications the network part of the address uses
only 64 bits, while the remaining 64 least significant bits are left to identify the device. This freedom
to construct an IPv6 address is used in many applications. An example of this is the SLAAC protocol
[5], which allows devices to construct an IPv6 address using their 48 bit MAC address, simplifying
IPv6 address configuration. The same freedom can be used both to construct an IPv6 address from an
Amateur radio callsign and to map an IPv6 address following this construction to an Amateur radio
callsign.

The second disadvantage is centralized management. Even though the 44.0.0.0/8 block is very large,
as any shared resource, allocations of this block need to be managed centrally to prevent addressing
conflicts. Currently, AMPRNet hands off large sub-blocks to countries, which in turn split their sub-
blocks into projects or individuals. All this management is a time consuming process and is prone to
disputes.

Here, the advantage of IPv6 is that the address space is so large that it is relatively easy for an
individual to obtain a large block of address space for his own private and/or Amateur radio use.
Many ISPs are giving off /48 or /56 blocks to individual customers (from which 216 or 28 different
/64 networks can be extracted, respectively), and it is also possible to obtain similarly large networks
from tunnel providers such as Hurricane Electric [6] for individuals not having a native IPv6 ISP. This

Date: May 17, 2019.

25

makes it possible to construct a decentralized network where individuals or projects use their own IPv6
address space, rather than having to obtain it from a common pool allocated for Amateur radio. Thus,
management costs and possible conflicts are reduced significantly.

Finally, another disadvantage of IPv4 is address exhaustion. While it seems that the Amateur radio
community will manage to maintain the allocation of the 44.0.0.0/8 block for the near future, IPv4
addresses are by now a very scarce resource, and this large block represents a huge commercial interest.
Several large organizations have relinquished unused address space that was allocated to them in the
early times of the internet. Therefore, it is not impossible that the Amateur radio community might be
forced to free out some of their IPv4 space.

Motivated by how IPv6 manages to solve these problems, and in the interest of advancing Amateur
radio technology to the state-of-the-art by introducing IPv6 into our networks and experiments, this
short paper gives a concrete proposal about how to manage the addressing of an IPv6 Amateur radio
network.

The remaining part of this paper is organized as follows. In Section 2 we show how to encode
Amateur radio callsigns into IPv6 addresses. Section 3 gives a description of the proposed IPv6 Amateur
radio network, as well as it advantages in comparison to the current AMPRNet. An example of the
configuration of a network site using the ideas given here appears in Section 4. Section 5 gives some
instructions for people interested in joining the network. Some open research ideas are given in Section 6.

The paper is based on a text hosted in the author’s blog [7], which in turn was based on some posts
of the author in the 44net mailing list around 2016 outlining the proposal given here.

2. Encoding Amateur callsigns into IPv6 addresses

As mentioned in the Introduction, one of the key ideas of the proposal described in this article is that
all the IPv6 addresses used for Amateur radio should encode a valid Amateur radio callsign. In this
section we show how to do this.

Amateur radio callsigns are usually composed of up to 6 alphanumeric characters, so it is apparent
that there is plenty of space to encode an Amateur callsign into the 64 least significant bits of an IPv6
address. There are several proposals giving concrete methods of how to do this [8, 9, 10]. In this paper,
we consider [8], by Robert S. Quattlebaum, which seems the more complete proposal. However, the
author believes that an Amateur radio IPv6 network should be agnostic to the method used to encode
callsigns into IPv6 addresses. Each participating subnet should be free to choose its own encoding
method, provided that this is consistently used and registered in some online database.

For the reader’s convenience, let us briefly mention the most important features of the encoding
method given in [8]. Amateur callsigns are first encoded in a BASE40 character set, which comprises
alphanumeric characters, as well as ‘-’ and ‘/’. This allows the formation of more complicated callsigns,
such as EA4GPZ/P, EA/M0HXM, and also callsigns akin to the SSIDs used in AX.25 [11] to identify
different equipment belonging to the same operator (for instance, EA4GPZ-7).

A so called chunk encoding is given to encode three BASE40 characters into 16 bits. This makes it
possible to encode up to 12 characters in 64 bits, thus allowing most kinds of non-standard callsigns.
There are certain advantages to using callsigns shorter than this maximum. For instance, all callsigns up
to 8 characters long (and a few 9 character callsigns) can be encoded into a valid EUI-48 address. EUI-48
addresses are used as MAC addresses in several link layer networks, such as Ethernet. The possibility
to encode Amateur callsigns into not only IPv6 addresses but also Ethernet addresses allows us to have
identification directly at the link layer level and also to derive IPv6 addresses automatically by using
SLAAC.

3. The IPv6 Amateur radio network and its advantages

3.1. A network of whitelisted subnets. Another important idea of this proposal is to try to eliminate
centralization and management by requiring individuals and projects to obtain address space by their
own means rather than taking it from a common pool allocated to the Amateur radio community. With
the very large address space of IPv6, and given its current and foreseeable use, this is much more feasible
than in IPv4. Note that this view is contrary to some ongoing developments in the Amateur radio
community. For instance, the IARU R1 VHF Handbook [12] recommends that a global IPv6 allocation
be obtained for Amateur radio usage. In the opinion of the author, requiring that each participant uses
their own address space not only simplifies administrative costs, but also has some associated technical
advantages, such as solving the problems with the source address filtering done by most ISPs.

26

Since the IPv6 Amateur radio network is not envisioned as any particular subnet of the globally
routable IPv6 address space, there must be something that gives consistence to the network. The idea
is that the network is formed by an aggregation of unrelated IPv6 globally routable subnets such that:

• The packets that originate from these subnets are valid for routing via an Amateur radio fre-
quency link. In particular, the traffic originates from a duly licenced Amateur radio operator.

• Each of these subnets is using a certain mechanism to encode Amateur callsigns into IPv6
addresses as a means to identify the Amateur radio operator which originated the traffic.

Therefore, the element that gives consistence to the IPv6 Amateur radio network is a database of the
participating subnets. This database is intended to be used as a kind of whitelist when determining if a
certain IPv6 packet is fit for being routed through a radio frequency link, because both the source and
destination addresses belong to one of the subnets in the whitelist. The database is quite simple. It only
contains an entry for each subnet, with some metadata, such as contact details for the person in charge
of the subnet, and also the encoding method that each particular subnet is using to encode Amateur
callsigns into IPv6 addresses. In this way, anyone can find the callsign responsible for a particular IPv6
address in the network, by first looking up the subnet in the database and taking note of the encoding
method, and then using it to compute the callsign.

By now, it is not so clear how to publish and maintain this database of whitelisted subnets. It seems
that an online platform such as a wiki or custom web application could be appropriate. The author has
also made some experiments by publishing the whitelisted networks using BGP.

3.2. Reduced administration costs. The maintenance of a simple database of subnets participating in
the Amateur radio IPv6 network is a much simpler task than the allocation of the shared 44.0.0.0/8 block
to interested individuals. Therefore, it seems likely that this method of constructing and administrating
the network will reduce both the management effort and the conflicts significantly.

In the same spirit of “every individual contributes his own resources to the network”, it is also
envisioned that each participating subnet or individual manages DNS by his own means. Currently, the
domain ampr.org is used for most AMPRNet related projects and applications. This also represents an
added administration effort. Reverse DNS for AMPRNet addresses is handled by the same means as the
ampr.org domain. It seems more appropriate that each individual or project manages DNS as deemed
convenient, and obtains delegations for the reverse DNS from their ISP in the appropriate manner.

3.3. Identification of Amateur traffic. According to the ITU Radio Regulations as well as the Ama-
teur radio regulations in many countries, all Amateur transmissions must be identified with the callsign
of the transmitting station. Moreover, there are other limitations regarding transmission of information
by Amateur radio means. For instance, most countries explicitly forbid third party traffic, which is un-
derstood as the retransmission of messages not originated by or not intended for a licenced Amateur
radio operator. Since the Amateur service cannot be used with any pecuniary interest, the contents
of the allowable messages are also somewhat limited in this respect. Finally, encryption of messages is
forbidden both by the ITU Radio Regulations and by many countries (except in special cases of emer-
gency). Encryption is so often used in networking protocols that some care needs to be taken to decide
which network traffic is fit for routing over an Amateur radio frequency link.

Often, this problem is not solved properly. Little is done in many cases, by using ad-hoc solutions
that have evident flaws. While it does not seem easy to develop an approach that is completely fool
proof, IPv6 seems to offer some technical mechanisms that can help. First of all, the requirement that all
the IPv6 addresses participating in the Amateur radio IPv6 network embed the callsign of the operator
responsible for that device and transmission serves both to satisfy the requirement of identification of
Amateur transmissions and to prevent third party traffic. By making sure that a certain IPv6 packet
has a source and destination address belonging to Amateur operators, we can be sure that its payload is
not to be considered as third party traffic.

Clearly, some degree of trust is put on the people participating on the network. This scheme only works
well if IPv6 addresses belonging to the Amateur radio network are used solely for Amateur radio purposes
(i.e., for transmissions acceptable for the Amateur service, in particular, not having any pecuniary interest
or encryption). In any case, the addressing scheme also serves as a way of separating Amateur and non-
Amateur equipment in the network of an Amateur operator. Both kinds of equipment often share a
home network. By dividing such network into two subnets and only publishing one in the Amateur radio
whitelist, the distinction between non-Amateur and Amateur traffic is simplified.

Additionally, the whitelist can also be used to distinguish which online services can be accessed
only by licenced Amateur operators. For many online applications, in particular those that may cause

27

radio frequency transmissions, such as joining a repeater voice-over-IP conference or operating a club
transceiver remotely, it is necessary to identify the user as a licenced Amateur operator. There is no
readily available solution for doing this, and each service resorts to its own method, which usually involves
maintaining a database of logins for allowed users.

On the other hand, there are also many uses that can be offered to the wide public over the internet,
both as a way of showing Amateur radio publicly and for a matter of convenience. Some examples of
these are WebSDRs or listening to a repeater voice-over-IP conference (without transmitting).

Services of these two types are often mixed and it is an added burden to separate which parts need
authentication and which do not, besides implementing an appropriate authentication method. The IPv6
Amateur radio network can simplify this division. Services that require a licenced Amateur operator can
be configured to be accessible only from whitelisted IPv6 subnets belonging to the network.

3.4. Source address filtering. Another technical problem that affects the current AMPRNet is that
of source address filtering. Most ISPs will drop uplink packets that are sent from a source address other
than the IP address allocated to the user by the ISP. This prevents users from using addresses from the
44.0.0.0/8 block directly on the internet, since the outgoing packets would be blocked at their ISP.

The usual solution to this problem is to use IPv4-in-IPv4 tunnels (or other tunnelling protocols)
to interconnect the different AMPRNet stations over the network. However, this makes most of the
AMPRNet seem like a large VPN and makes the use of globally routable IP addresses less useful. A
large VPN would also work well with private IP addresses. Strictly speaking, only the few stations or
subnets that are announcing their AMPRNet addresses by BGP on the internet are really using the
44.0.0.0/8 block over the internet.

The IPv6 Amateur radio network solves this problem because every user is required to use their
own address space, obtained from their ISP or a tunnel provider. In this way, such an address space
can be used over the internet with no limitations. Subnets participating in the Amateur network can be
connected directly over the internet, without the need for any tunnelling, and IPv6 addresses participating
in the network can also be used to communicate with non-Amateur equipment on the internet (often for
purposes as important as downloading software updates).

3.5. Large blocks for National Societies. Though the proposal given in this paper envisions that
each individual or small project would be required to obtain their own IPv6 address space directly from
their ISP (or a tunnel provider), it also allows for the possibility that large National Societies or other
Amateur societies, such as the IARU regions, may be able to request a larger block directly from their
corresponding RIR, announce that block by BGP directly on the internet and use it to give access
by radio frequency or other means to interested Amateur operators. In this way, such a society would
effectively become an ISP. This approach could still find some problems regarding source address filtering,
as detailed above, but nevertheless is compatible with all the ideas outlined in this paper.

4. A case study: the network at EA4GPZ

In this section we give a concrete example by showing how some of the Amateur radio equipment in
the home network of the author has been configured following the ideas in this paper.

The block that EA4GPZ is using is 2001:470:6915:8000::/49, which has been obtained from the IPv6
tunnel broker at Hurrican Electric [6]. The method used to encode Amateur callsigns into addresses is
the BASE40 method described above.

There are the following devices and callsigns in the network:

• Router: EA4GPZ-X
• Server: EA4GPZ-Z
• User access, 2.4GHz: EA4GPZ-S
• User access, 5GHz: EA4GPZ-C

Note: EA4GPZ-S and EA4GPZ-C are currently offline, but the IPv6 addresses are assigned in the
DNS.

The callsigns -X and -Z have been chosen because they somehow seem suggesting for a router and a
server. The callsigns -S and -C refer to S band (2.4GHz) and C band (5GHz).

The following EUI-48 addresses are assigned to the callsigns above, using the method given in this
paper:

• EA4GPZ-X 42:1F:87:2E:5A:F1
• EA4GPZ-Z 92:1F:87:2E:5A:F1

28

• EA4GPZ-S 7A:1F:87:2E:5A:F0
• EA4GPZ-C FA:1F:87:2E:5A:ED

These EUI-48 addresses can be used directly as Ethernet MAC addresses, which is what is being
currently done.

Following the Hamnet terminology, the network 2001:470:6915:8000::/64 is used as a Service-Network
and the network 2001:470:6915:8001::/64 is used as a User-Network. This means that servers run in
the Service-Network and users that connect by the radio frequency access points get addresses from the
User-Network.

The router has the following statically assigned IPv6 addresses:

• 2001:470:6915:8000:421f:87ff:fe2e:5af1
• 2001:470:6915:8001:421f:87ff:fe2e:5af1

In this way, the following IPv6 addresses are generated automatically using SLAAC:

• EA4GPZ-Z 2001:470:6915:8000:901f:87ff:fe2e:5af1
• EA4GPZ-S 2001:470:6915:8001:781f:87ff:fe2e:5af0
• EA4GPZ-C 2001:470:6915:8001:f81f:87ff:fe2e:5aed

The devices which connect through the radio frequency access and have their MAC address properly
set up with their callsign using a BASE40-derived EUI-48 address will also obtain, by using SLAAC, an
IPv6 address that encodes their callsign.

The IPv6 addresses listed above are published in DNS and reverse DNS using the names:

• EA4GPZ-X router.ea4gpz.destevez.net
• EA4GPZ-Z ea4gpz.destevez.net
• EA4GPZ-S user-2ghz.ea4gpz.destevez.net
• EA4GPZ-C user-5ghz.ea4gpz.destevez.net

Ping from the internet is allowed to all these IP addresses. Access from the internet to the following
services running in ea4gpz.destevez.net is also allowed:

• ssh
• mumble
• dxspider (port 7300)

5. Joining the IPv6 Amateur radio network

The author believes that a key to the success of a good idea is that it gains popularity and adoption.
So far, not many people have become interested about an IPv6 Amateur radio network as detailed in this
paper. There can be several reasons for this, such as the limited number of Amateur operators interested
in this kind of technologies, a limited time for the hobby that gets spent on other aspects of it, or simply
that not enough publicity has been given to these ideas (hopefully this paper will try to solve this last
cause).

Interested Amateur radio operators are invited to contact the author at the email address given at the
end of the paper. As the IPv6 Amateur radio network is a decentralized network where each user offers
his own network resources, it is up to each individual to join it. Interested people with some knowledge
of IPv6 are already able to join the network. This section gives an overview of the steps needed to do
so, depending on the internet connection of the user.

People which already have access to the IPv6 internet and have a globally routable block which is
larger than a /64 and that they can administer can use some subnet of this block for their Amateur
radio equipment. Probably the best idea is to use a /64 as a Service-Network and another /64 as User-
Network if user access by radio frequency is to be expected. It is recommened to allocate a subnet larger
than these two /64s, as it may become necessary to give blocks to stations connected directly by radio
frequency in the future. An idea is to allocate half of the block available from the ISP for personal or
home use and the other half for Amateur radio use.

Then it is necessary to chose a method to encode callsigns into IPv6 addresses. The method given in
[8] is recommended. It is mandatory that all the globally routable IPv6 addresses in use have a valid
callsign associated using the chosen method. It is also recommended to do so for link-local addresses,
but it is not necessary.

People which do not have access to the IPv6 internet but have a static IPv4 address can obtain a /48
IPv6 subnet by at least two methods:

29

• Using 6to4. This only requires some setup on the router. It also requires access to a 6to4
relay (the anycasted IPv4 address 192.88.99.1). Some ISPs do not give access to a relay. The
performance depends on the 6to4 relay you access (there is no control about it, as this depends
depends on the ISP’s routing). The /48 block obtained depends only on the static IPv4 address.

• Using a tunnel broker such as Hurricane Electric [6]. This requires a registration in the bro-
ker’s webpage and the set up of the tunnel, as well as some configuration in the router. The
performance depends on the other end of the tunnel. The /48 block obtained in this manner is
assigned by the tunnel broker from his own network.

Depending on the ISP, these methods could give better or worst performance regarding latency and
bandwidth. It is possible to try out both methods and choose the one that gives better performance.

People which have a dynamic IPv4 address can use the tunnel broker from Hurricane Electric [6]. It
offers a service to update the tunnel’s IPv4 address, which is compatible with dyndns’ update protocol.

6. Research ideas

Here we give some ideas which seem interesting topics for research or experimentation, thus advancing
the state-of-the-art of Amateur radio.

• Mobile IP. The author has already performed some preliminary tests with UMIP [13].
• Using Differentiated Services to decide if the traffic should be routed by radio frequency links or

through the internet (whenever both alternatives are possible). This solves the existing problem
that many sites are connected both by the radio frequency links and by the internet, and it is
never clear which to prefer when routing the traffic, since certain routes would be best depending
on the intended application.

• Using NAT64, CLAT or SIIT to allow access to the AMPRNet from the Amateur radio IPv6
network.

• Using WHOIS to store the contact data for each subnet participating in the Amateur radio IPv6
network.

References

[1] Amateur Radio Digital Communications, Managing the AMPRNet – TCP/IP Networking for Amateur Radio, https:
//www.ampr.org/

[2] Highspeed Amateurradio Multimedia NETwork, https://hamnet.eu/
[3] Wikipedia, Cisco Discovery Protocol, https://en.wikipedia.org/wiki/Cisco_Discovery_Protocol
[4] HamnetDB, Hamnet IP-Database http://hamnetdb.net/

[5] RFC4862: IPv6 Stateless Address Autoconfiguration, https://tools.ietf.org/html/rfc4862
[6] Hurricane Electric Free IPv6 Tunnel Broker https://tunnelbroker.net/
[7] Daniel Estévez, IPv6 for Amateur radio https://destevez.net/ipv6-for-amateur-radio/

[8] Robert S. Quattlebaum, Amateur Radio Numeric Callsign Encoding, https://github.com/darconeous/ham-addr/

blob/master/n6drc-arnce.md

[9] ham-ipv6 https://sourceforge.net/projects/hamv6/

[10] Matti Aarnio, Some idea for IPv6 addressing for radio-amateur nodes, http://ham.zmailer.org/oh2mqk/packet-ipv6.
html

[11] TAPR, AX.25 Link Access Protocol for Amateur Packet Radio, https://www.tapr.org/pub_ax25.html

[12] IARU R1, VHF Handbook V8.12 https://www.iaru-r1.org/index.php/downloads/func-startdown/1009/

[13] UMIP, Mobile IPv6 and NEMO for Linux, http://www.umip.org/

E-mail address: daniel@destevez.net

30

Synchronization in FT8

Mike Hasselbeck, WB2FKO

mph@sportscliche.com

Abstract

Deconstruction of the FT8 open-source FORTRAN code provides insight on the synchroniza-
tion algorithm. The heart of the synchronization scheme is a Costas Array, a specially designed
square matrix that was invented in 1965 to improve the reliability of underwater sonar. An
intuitive explanation of the Costas Array is given, followed by a detailed description of its
implementation in the FT8 decoder.

Keywords: FT8, WSJT-X, Costas Array

Introduction. FT8 is a sub-mode of WSJT-X that has become extremely popular for working DX because
it enables fast, efficient communication in marginal, weak signal conditions. Forward Error Correction
makes this possible, but it requires that transmitting stations and receiver be synchronized to better than
20 ms in time and less than 1 Hz in frequency. Such precision is generally not possible with amateur radio
equipment using external reference clocks, so the protocol must supply its own synchronization signal.
The different WSJT-X modes accomplish this in a variety of ways, depending on the design requirements.
FT8 uses a 7x7 Costas Array [1]. The FT8 decoder performs a coarse search for Costas synchronization
symbols in the 15-second frequency waterfall. Synchronization signals that are above a defined energy
threshold are identified as candidates for additional decoding. Candidates are adjusted to have initial time
and frequency offset accuracy of about 40 ms and 3 Hz. The synch signal of each candidate is then used in
a second calculation that performs a quasi-coherent cross-correlation to fine-tune the time and frequency
alignment between one or more transmitting stations and the reference frame of the decoder.

Principle of the Costas Array. The following pictorial example can provide an intuitive understanding.
An example of a non-Costas array is the diagonal 3x3 matrix M . All the matrix elements are zero except
along the diagonal at positions M1,1,M2,2, and M3,3. Render the matrix as a mask, with transparent
holes at the three diagonal positions (Figure 1, left). The mask is the frame of reference. An identical
signal array is configured with LEDs at the same positions as the mask holes (Figure 1, right). Each LED
contributes 1 unit of signal. To get the maximum light transmission of 3 through the mask, it must be
perfectly aligned with the LED array.

Figure 1: 3x3 diagonal mask (left) and LED array (right).

31

Figure 2: Misalignment of the mask by 1 array element on each axis (left); Transmission approaching maximum
(right).

A systematic search of x and y is used to find the maximum brightness. Misalignment by an amount
Δx = −1 and Δy = +1 is shown in Figure 2, left. Incremental, trial-and-error movement along x and y
eventually locates the three holes (Figure 2, right), until the maximum shown in Figure 1 (right) is attained.
The amount the mask must displaced to attain maximum brightness measures the x and y offsets of the
signal from the reference.

Now assume one of the LEDs is off at either position M1,1 or M3,3. A maximum transmitted signal of 2
can be obtained at two different alignments: i) correct overlap or ii) a single element displacement in x
and y as shown in Figure 2, left. Because the maximum achievable brightness is reduced from 3 to 2, we
would know that one LED is off. Loss of one LED, however, introduces alignment ambiguity.

Figure 3: 3x3 Costas Array (left). Position offsets Δx and Δy between signal and reference frames are unambiguously
located even with one LED off (right).

The Costas Array shown in Figure 3 (left) solves this problem. Holes and LEDs are located at array
positions M1,2,M2,3, and M3,1. If any one of the three LEDs is dark, the two remaining LEDs can be used
to align the mask with no positioning ambiguity (Figure 3, right). Ambiguity returns if two or more LEDs

32

are off.

The 3x3 Costas Array assures alignment accuracy even when any one of the LEDs is compromised. Dark
LEDs represent missing or corrupt data. This situation often occurs on noisy channels such as encountered
in sonar, radar, and weak-signal communications. Maintaining critical time and frequency synchronization
between transmitted and reflected signals in submarine sonar motivated research in this area by J.P. Costas
[2].

In the above example, the Costas Array is used for two-axis (x, y) positional accuracy. In communication
applications, the array dimensions are changed to time and frequency.

Costas Array in FT8. The square matrix representing the Costas Array is implemented with discrete
time steps (columns) and frequency steps (rows). In FT8, there are 7 sequential time steps and 7 non-
sequential frequency steps. The row values are the integers 3,1,4,0,6,5,2 and the time steps run from 1 to 7
as depicted in Figure 4. This is just one of the 200 possible 7x7 Costas Arrays [3]. The unique footprint of
the Costas Array allows unambiguous alignment of the data stream at the receiving station. The decoder
will look for the expected time sequence of symbols in the received message and attempt to establish the
needed temporal and frequency synchronization between the two stations.

Figure 4: 7x7 Costas Array used in FT8 v2. The time and frequency steps are 160 ms and 6.25 Hz, respectively.

The 7x7 Costas Array is rendered by 7 of the 8 available FT8 tones, occupying 7 time steps. The sequence
of tones is 3,1,4,0,6,5,2. Each tone is one symbol of duration 160 ms and 7 symbols require 1.12 seconds.
To compensate for drift and fading that may occur over the 12.64 second duration of an FT8 transmission
and to accommodate time synchronization offsets in the range: −2 ≤ Δt ≤ +3 seconds, the same Costas
array is inserted at the beginning, middle, and end of each message. This means that 26.6% of each FT8
message is allocated to synchronization.

Figure 5 (left) is a time plot of the imaginary part of the 7x7 Costas Array sampled at 12000 S/sec. This
signal modulates the audio carrier frequency fc selected by the FT8 operator for transmission. In version
2.1 of WSJT-X, Frequency Shift Keying (FSK) has been replaced with Gaussian FSK (GFSK). Transitions

33

Figure 5: Left: The 7x7 Costas Array rendered as a sequence of GFSK symbols at 6.25 Hz multiples. The audio
carrier frequency fc has been set to zero for clarity. Right: Comparison of FSK and GFSK at the transition between
Tone 4 and Tone 0.

Figure 6: Arrangement of the 7x7 Costas Array in the transmitted FT8 signal. The synch tones occupy 21 of the
79 symbol bins. The information bits, Forward Error Correction, and Cyclical Redundancy Check are placed in the
remaining 58 bins.

34

between the tones (symbols) are not as abrupt (Figure 5, right), resulting in a significant reduction of signal
bandwidth [4].

GFSK modulation is identical for the 21 synchronization tones and 58 encoded message symbols. Legacy
FT8 (in versions 1.9 and earlier) uses a 7x7 Costas Array that is the reverse sequence of the current version,
ie. 2,5,6,0,4,1,3. This was changed in version 2 so that the new decoder could potentially recognize signals
from earlier versions of the program. The location of synch tones, however, remains the same (Figure 6).

There is additional bandwidth required for each symbol (tone) to accommodate the baud rate, ie. 6.25 Hz.
Tone 0 occupies frequency f0 = fc ± 3.125 Hz. Tone 7 is f7 = fc + 43.75 ± 3.125 Hz. The total FT8
signal resides in the frequency span: f0 = fc− 3.125 to f7 = fc + 43.75 + 3.125 Hz, which defines the 50
Hz modulation bandwidth.

Decoding. Signals may appear on a multitude of carrier frequencies anywhere in the receiver audio
passband with an unknown time offset relative to the receiver clock. Figure 7 illustrates two trains of FT8
synchronization symbols. The audio carrier frequencies are located at Tone 0; the time offset between the
two signals is slightly greater than one symbol bin.

Figure 7: Costas Array symbol sequence for two FT8 signals in the receiver passband. The signals are offset in time
by slightly greater than one symbol bin (0.16 s/symbol). Eight of the 79 symbol bins are shown.

The first task of the decoder is to establish time synchronization with any incoming data. This is accom-
plished in a series of operations depicted by the block diagram in Figure 8. Each block is described in more
detail below.

The received FT8 signal is sampled at 12000 S/sec for 15 seconds, generating 180,000 16-bit audio samples.
This corresponds to 180k x 16 = 2.88 Mb of data. Decoding does not commence until all the data has
been acquired.

The decoder begins by searching the data for synchronization signals. This is handled by the FORTRAN
subroutine sync8.f90 in the FT8 source code. The audio energy spectrum is calculated at sequential,
partially overlapping time windows. The time increment is 1/4 of the duration of a single FT8 symbol,

35

Figure 8: Block diagram of the FT8 synchronization process.

i.e. 40 ms. 372 individual spectra are obtained, with the last 120 ms of the 15 second data capture ignored.
Spectra are generated by performing a sequence of 372 time-partitioned Fast Fourier Transforms (FFTi

where i=1,2,...372) with data collected from 160 ms time windows, but interleaved by 1/4 symbol. For
example, FFT1 is evaluated for the interval 0–160 ms, FFT2 is 40–200 ms, FFT3 is 80–240 ms, FFT4 is
120–280 ms up to FFT372 for the final 160 ms time segment. This is illustrated for the first ∼ 1 second of
the received signal in Figure 9.

Each 160 ms sample interval is zero-padded to produce a 320 ms input signal for the FFT calculation;
the FFTi spectra span a frequency range from 3.125 Hz to 6 kHz. The operator sets the FT8 waterfall
frequency range considerably smaller than this, eg. 200–2500 Hz, so only the calculated FFT range matching
the waterfall is used.

The decoder next attempts to obtain time synchronization between the receiving station and a possible
transmitting station at an audio baseline frequency fc. There can be many received stations in the audio
waterfall, each with a different fc and time synch offset. The data at fc is scanned for the correct synch
tones employing 125 different start times t0 in the range t0 = 0.5 ± 2.5 seconds, where the +0.5 second
offset accounts for the delayed start of transmit. The time search increment is also 40 ms.

Starting at the lowest frequency that was set in the waterfall (eg. fc = 200 Hz) the decoder sums the

Figure 9: Searching for the synch signal at the start of the captured FT8 waveform. FFTs are calculated in the
time intervals depicted by the horizontal bars. If the transmitter and receiver are perfectly aligned, the 7 elements of
the first Costas array will be in the intervals FFT1, FFT5, FFT9, FFT13, FFT17, FFT21, and FFT25 (not shown).
The decoder scans 125 different time offsets looking for the synch tones. The vertical axis in this plot is meaningless.

36

spectral energy density at the expected locations of the 7 Costas synch signals. As an example, when t0
= 0 the energies at the following 7 frequency locations are summed: fc + 18.75 Hz in FFT1, fc + 6.25 Hz
in FFT5, fc + 25 Hz in FFT9, fc in FFT13, fc + 37.5 Hz in FFT17, fc + 31.25 Hz in FFT21, and fc +
12.5 Hz in FFT25. These are slices of the time-partitioned energy spectrum corresponding to the Costas
array sequence [3,1,4,0,6,5,2]. This synch sum ta is normalized to the spectral content in all of the lowest 7
frequency bins for each of the 7 time intervals. The normalization sum t0a is obtained by adding frequency
bins 0–6 in FFT1, FFT5, FFT9, FFT13, FFT17, FFT21, and FFT25. There are 7 components in the sum
ta and 49 components in t0a.

This calculation is repeated at the expected location of the remaining two synch signals. For the present
example with t0 = 0, these are time positions 5.76 seconds (Costas tones expected in FFT144, FFT148,
FFT152, FFT156, FFT160, FFT164, FFT168) and 11.52 seconds (Costas tones expected in FFT288, FFT232,
FFT236, FFT240, FFT244, FFT248, FFT252). This produces synch sums tb and tc and normalization sums t0b
and t0c, respectively. The decoder then generates sums t = ta+tb+tc and tN = (t0a+t0b+t0c−ta−tb−tc)/6.
tN represents the averaged energy content of the 6 nominally empty frequency bins at each of the 7 time
positions. The final normalized synch signal is Sabc = t/tN .

For each fc, the decode algorithm looks for the maximum total synch signal while scanning 125 time
increments in the range −2 ≤ t0 ≤ 3 seconds. For start times t0 < 0, some or all of the Costas synch signal
ta will not be available. To accommodate this, a second normalized synch signal Sbc is calculated as above,
except ta and t0a are ignored. The larger value of either Sabc or Sbc is recorded as the total synch signal at
fc for each of the 125 start times. Normalization allows Sabc and Sbc to be directly compared despite their
different data counts.

The frequency fc is incremented by 3.125 Hz and the above time synch calculation repeated. The frequency
iteration process continues until the highest frequency that was set in the waterfall is reached. For waterfall
audio in the range fc = 200–2500 Hz, there will be 737 x 125 = 92,125 synchronization calculations
performed for each 15-second FT8 receive interval.

A 2-dimensional array holds the best (strongest) total synch signal for each fc and the corresponding index
of its time offset. This array is sorted from weakest to strongest signals using the FORTRAN subroutine
in indexx.f90 [5]. A baseline synch signal is established at the approximate midway point of the sorted
array range; all synch signals in the array are normalized to this value. This means only about half of the
captured audio spectrum will have synch signals with a normalized value ≥ 1.

Starting with the strongest normalized synch signal, the decoder checks for values ≥ 1.5. If the strongest
normalized synch signal is < 1.5, the decoder exits. Signals above the 1.5 threshold are tagged as candidates
for further decoding. The audio baseline frequency fc, time synch offset, and normalized synch signal of
each candidate are recorded. As many as 200 candidate signals can be acquired. If there are two candidates
within 4 Hz of each other, however, the weaker candidate is discarded.

At this point, synchronization has been established to 3.125 Hz and 40 ms for every candidate signal in the
waterfall display. Greater accuracy is possible using coherent detection with the FORTRAN subroutine
ft8b.f90.

The first operation in ft8b is to reacquire the spectrum of the complete 15-second FT8 signal. This
is accomplished with a call to the subroutine ft8 downsample.f90, which performs a FFT. A frequency
resolution of 0.0625 Hz is obtained by zero-padding the time signal by 1 second to make 192,000 total time
steps at 12000 samples/second.

There is a carrier frequency fc associated with each candidate. The decoder locates fc in the spectrum and
slices out the portion fc − 9.375 Hz to fc + 53.125 Hz representing 1000 sample points. fc is subtracted

37

from this array subset to baseline the spectrum at fc = 0 Hz. An inverse FFT is then performed on
the frequency-shifted spectrum to generate a complex time domain signal (i.e. in-phase and quadrature,
phase-shifted +90◦) without the carrier. The 16-second complex temporal waveforms have 3200 points,
giving 5 ms resolution. Each candidate signal is re-cast in complex form to enable tighter synchronization
and eventual decoding.

The decoder enters subroutine sync8d.f90 and generates a complex reference waveform with k = 7 symbols
Rk,m representing the FT8 Costas Array. Because the correlation calculations make a heavy demand on the
processor, the sampling rate is reduced by a factor 60 compared to the waveform shown in Figure 5. The
Costas Array used in this subroutine has m = 32 samples/symbol separated by 5 ms. GFSK smoothing is
not effective at the coarser resolution, so the reference waveforms are rendered with standard FSK (upper
2 traces in Fig. 10).

Figure 10: Real (top) and imaginary (middle) components of the reference complex Costas Array waveform with
32 points/symbol as generated by subroutine sync8d.f90. There is padding with Tone 0 on both sides for the cross-
correlation calculations. The bottom waveform depicts the imaginary component of a simulated received signal with
Gaussian amplitude white noise; signal-to-noise ratio is 2:1. Not shown is a similar noisy waveform for the real
component. Waveforms are displaced vertically for clarity.

The candidate signal is trimmed to 3125 data points separated by 5 ms and contains up to three Costas Ar-
ray synch waveforms Cj,k,m located at the beginning (j=1), middle (j=2), and end (j=3). Each candidate
has time synchronization already established to ± 40 ms, so it is only necessary to search within this 80 ms
range with n = 17 time-step iterations of 5 ms/step. This is implemented with a cross-correlation between
the received symbols C and reference symbols R in the Costas Array as follows. A complex product is
calculated for each received symbol C at each Costas Array location j:

38

zj,k =
32∑

m=1

Cj,k,mR∗
k,m (1)

where each of them = 1−32 elements (i.e. sample points) of a symbol C is multiplied with the corresponding
element in the complex conjugate of the reference symbol R∗. The squared amplitude of each calculation
in Equation (1) is summed to produce the aggregate synchronization signal:

Tn =
7∑

k=1

[|z1,k|2 + |z2,k|2 + |z3,k|2
]

(2)

Tn is evaluated at n = 17 different time alignments between C and R: Δt = −40,−35, ...0...+35,+40 ms.
At each time step n, j × k = 21 individual correlations are performed, each with duration of one symbol,
i.e. 160 ms. The decoder looks for the maximum value of Tn and sets this as the final time synchronization
point.

Long duration correlations using the entire 7-symbol sequence of the Costas Array can, in principle, generate
sharper peaks. This is not practical because signal coherence may be lost over the propagation path on
a timescale approaching 1 second. Moreover, the carrier phase may be misaligned with respect to the
reference Costas Array waveform anywhere in the range 0−2π. The summed correlation power of individual
symbols given by Equation (2) produces a useful peak without any knowledge of the carrier phase offset.
Coherence is only required for the duration of each 160 ms symbol.

The operation described above can be illustrated by calculating cross-correlations of the reference Costas
Array with simulated received signals. Representative waveforms are shown in Figure 10. The top and
middle waveforms are the real and imaginary (quadrature) components, respectively, of the reference Costas
Array, i.e. without noise. The bottom waveform shows the imaginary component with additive Gaussian
white noise at a signal-to-noise ratio of 2:1 as might be encountered with a weak received signal [6].

Calculated cross-correlations for a single FT8 Costas Array [3,1,4,0,6,5,2] are shown in Figure 11, repre-
senting just one term on the right side of Equation (2). A noise-free sequence of 7 symbols establishes
the synchronization point to better than 10 ms (solid curve). The three dashed curves show the effect of
additive Gaussian white noise at a signal-to-noise ratio of 2:1. The correct synchronization point is still
located with an accuracy of ± 10 ms. This illustration is for a single Costas Array sequence; there may be
as many as two more additional signals zj available on the received signal to produce a useful maximum
in T .

Fine frequency adjustment is performed with a cross-correlation using the same subroutine sync8.f90 and
procedure outlined above. The frequency is scanned in n = 11 increments of Δf = 0.5 Hz/step over the
range ± 2.5 Hz. This corresponds to an incremental phase scan of Δφ = −4.5◦,−3.6◦, ...0◦...+ 4.5◦ in an
attempt to peak the cross-correlation Tn. This second cross-correlation brings frequency synchronization
to within 1 Hz. The time and frequency corrections determined by the two cross-correlations are then
applied to the corresponding candidate data set to establish the desired synchronization.

Before attempting to decode the message contained in the 58 information bins, the ft8b subroutine makes a
final quality check of the optimized synchronization. A sequence of 79 time-partitioned FFTs is performed
at the time slot of every tone in the entire candidate signal. Each 160 ms symbol has 32 sample points
that are used by the FFT algorithm to calculate its complex spectrum. The first 8 points in the FFT data
array correspond to the energy content in the 8 FT8 tones; only these 8 frequency bins are of interest. The
FT8 tone with the largest magnitude is assigned to that bin. In this way, the 21 synchronization bins are
assigned one of the FT8 tones. The information bins are evaluated with a separate procedure.

39

Figure 11: Simulated cross-correlations using a single FT8 Costas Array [3,1,4,0,6,5,2]. A noise-free, perfectly
phase-aligned correlation is depicted with the solid black line. The dashed curves are for signals having carrier phase
randomly aligned with the reference plus additive Gaussian white noise; signal-to-noise 2:1.

The next step is to compare the tones that have been assigned to bins 1–7, 37–43, and 73–79 with the tones
expected for the Costas Array, i.e. the tone sequence 3,1,4,0,6,5,2 as shown in Figure 6. Three error-free
sequences results in the maximum possible 21 matches. Because of the powerful Forward Error Correction
present in the coded messages, the decoder can reliably proceed with as little as 7 matches. Fewer than 7
matches will cause the decoder to give up and evaluate the next candidate.

Acknowledgements. Helpful dialogue was provided by J. Frazier (KC5RUO), P. Karn (KA9Q), S. Franke
(K9AN), and J. Taylor (K1JT).

Disclaimer: This is not official documentation for the WSJT-X open source project. It represents the
author’s best understanding of the FT8 synchronization scheme. There may be errors and misconceptions.

Updates to this document will be posted at: www.sportscliche.com/wb2fko/tech.html.

40

References

[1] J. Taylor, S. Franke, B. Somerville “Work the World with WSJT-X, Part 2: Codes, Modes, and
Cooperative Software Development”, QST (Nov. 2017)

[2] J.P. Costas, “A study of a class of detection waveforms having nearly ideal range-doppler ambiguity
properties”, Proc. IEEE 72, 996 (1984).

[3] S.W. Golomb and H. Taylor “Construction and properties of Costas arrays”, Proc. IEEE 72, 1143
(1984).

[4] J. Taylor, S. Franke, B. Somerville “The FT4 Protocol for Digital Contesting”, WSJT-X Developer
Technical Note (April 22, 2019).

[5] B.P. Flannery, S. Teukolsky, W.T. Vetterling, W.H. Press, Numerical Recipes in FORTRAN: The
Art of Scientific Computing, Cambridge:NY (1997).

[6] The simulation ignores leakage resulting from windowing in the inverse FFT.

41

WSPR in an educational Project

How to simply program a WSPR transmission with an Arduino?

Anthony LE CREN, F4GOH
f4goh@orange.fr

Abstract

Since several years I have been trying to design projects to promote HAM radio, and especially for
young people who want to pass their radio license. But most of the time, projects are complicated
and require a good level of electronics. The article described below is for people who know to blink a
led with an Arduino and wiring a breadboard.

Introduction

The idea is to generate WSPR signal with an AD9850 controlled by an Arduino, A DS3231 RTC
synchronize time to transmit WSPR. The level of programming has been limited to the easiest, in
fact, a simple loop makes it possible to transmit the WSPR signal. In addition the assembly can be
wired on a breadboard step by step. You will learn how to program a DDS, make filters and setting
the transmission frequency.

WSPR beacon features: Arduino nano (atmega328P) based microcontroller :

 Support Arduino IDE 1.0+ (OSX/Win/Linux)
 Power via USB or External Source + 5v
 2 I/O Pins (for GPS receiver)
 Removable filter
 AD9850 DDS
 RTC DS3231
 BS170 power amplifier 0.1W
 Fit in Aluminium Instrument Box Enclosure Case 100x66x43
 PCB available

42

1 Description

The real-time clock synchronizes Arduino to transmit every even minute. The Oled screen is optional
and simply displays the time. DDS (Direct Digital Synthesis) generates an RF signal. The transistor
BS170 is used as a class E amplifier and requires a low-pass filter.

Schematics:

43

Two ways to use bs170 :

– use QN (J2) DDS output and replace C7 capacitor by a strap. don’t put R3,C6,R4,L1, and left j8
open (this is the configuration i used). Adjust DDS 9850 trim to have a ~ « square wave » at the QN
output. When transmission is OFF QN voltage should be 0V. Use any scope, you can find GND
connection at PT5.

– use SINB(J2) and apply voltage polarization on BS170 gate. (put R3,C6,R4,L1 and strap J8) then
apply analogWrite command on nano pin 6. (to adjust gain by software). if gain value is too high
bs170 may be destroyed.

You can find a pad space to experiment your own stuff and change bs170 to another transistor.

J1 connector could be dedicated for GPS input. But it can be used for another things like external
lowpass filter commutation.

Ds1820 is planned just for fun, to send temperature by RTTY or PSK modulation.

The transmitter can be wired on a breadboard

44

2 How to program AD9850 DDS?

Arduino nano uses its SPI (Serial Peripheral interface) to update the frequency in the DDS

The frequency is not update in HZ. You must send a 32-bit word proportional to the frequency as
shown in the formula below.

45

3 WSPR encoding

To generate symbols, execute WSPR symbols generator :

- Put your callsign
- Put your locator
- And finish by power (20 dBm for 0.1W)
- Click Generate
- Paste symbols on wsprSimple.ino program.

46

The FOR loop simply transmit the WSPR signal :

4 Build a low pass filter (40 meters, 7.2 Mhz)

The best way is use svcfilter designer. This software calculates inductors and capacitors for any
bandwith.

47

Use mini tore calculator software to check
numbers of turns:

t30-2 :19 turns
ft37-43 (BS170 drain inductor): 18 turns

5 Conclusion

It was a pleasure to study DDS and WSPR modulation. This project was designed essentially for
makers. Adapt it as you want. There are more screenshots on my web page. Reports are incredible
with an 5V USB power.

References
https://hamprojects.wordpress.com/
https://github.com/f4goh/WSPR
http://www.g4jnt.com/wspr_coding_process.pdf
http://tonnesoftware.com/svcdownload.html
https://constructions.f6fkn.com/downloads/minirk12-install.exe
https://kitsandparts.com/ (toroids)

48

Portable Audio Frequency-Shift Keying Sensors using a Hamshield mini

Nolan Pearce , KE8JCT, Stephen S. Hamilton ,†, KJ5HY and Kate J Duncan ,†, KB2ZOO
United States Military Academy*, Army Cyber Institute†

{ nolan.pearce, stephen.hamilton, katherine.duncan}@westpoint.edu

Abstract

The newly developed Hamshield mini and commercially available electronic devices integrated with
the Hamshield can be used to create an auto-reporting ham radio motion detector. Open-source
Arduino code, a Passive Infrared (PIR) sensor, and looped audio frequency shift keying (AFSK)
transmissions were assembled to create a low-power, low-cost, open library, small form-factor device
that expands upon current automatic remote beacon sensors. In this paper, we detail an open-source
amateur radio QRP VHF/UHF packet radio using the Hamshield. Furthermore, the compatibility with
Arduino single-board microcontrollers will enable current amateur radio technologies.

Key Words

QRP, Arduino, Packet, AFSK, Automation

Introduction/Background

The Hamshield mini is a new crowd-funded piece of amateur radio technology that appears
constrained only by its user’s imagination; the mini is capable of data, voice, CW, remote control, and
telemetry all within a form factor of approximately a USB stick. This new device is part of a larger
trend in technology where fast, cheap, open source projects replace legacy hardware systems as is
often performed with the Raspberry Pi. This “rapid prototyping” utilizes readily available feedback to
provide quick solutions to simple problems and for which no conventional solution exists. This project
is intended to provide substance and evidence for ad-hoc solutions to unusual and emergent situations,
while utilizing the Hamshield.

Solution

The Hamshield mini is integrated with a PIR sensors to form a mobile movement detector. This device
automatically relays a predetermined AFSK message on the 2m ham band when triggered by a change
in the PIR sensors output voltage. This message can then be decoded on a remote ground station far
from the sensor itself. The PIR sensor’s low voltage operation and small form factor made it easily
compatible with the end goal of the project. To create this code, the Hamshield’s AFSK example code
on github [1] was downloaded and modified for this project. This was then combined with another
open-sourced demonstration of the PIR sensor [4] and modified to run in a continuous loop. Figure 1
describes the schematic of the system.

49

Design

Several competing factors created the final design of the device. The Hamshield’s low-cost and aspects
such as low power consumption, small form factor, and open-source code, were factors in deciding on
it for the use as our disposable remote sensor. First, the goal of the project was to develop a low-cost,
open source solution for an AFSK mobile messaging movement detector. Arduino pro minis have
common libraries and low operating voltage (3.3 Volts) and cost as little as $10. Next, the system
needed to be battery-powered with an extended lifespan (24 hours). Anker phone batteries provide
long battery life and are the same size of a mini breadboard. Additionally, the Hamshield operates at a
power output of 200 milliwatts [1], which is desirable for line-of-sight QRP (low power)
communications. Finally, the device must have as small form factor; although the Hamshield mini was
prototyped with longer wires plugging directly above the Arduino on the breadboard this form factor
can be reduced.

Figure 2 shows the prototyped product; clearly visible are the battery, Arduino mini, PIR sensor, and
Hamshield over top of the microcontroller. The antenna, an ANT-500, acted as the largest component
of this system: a promising feature of this project is the ability in integrate more features onto the
Arduino to increase capabilities, such as a distance measurer or other telemetry devices.

Figure 1

Figure 2

50

Results

The finished project operates effectively with low power consumption, a small form factor, and easily
obtainable components (the total system cost was under $70). The code remains open-source and
compatible with Arduino technology [3]. Due to the operating voltage of the PIR sensor (using low-
power 3.33 Volts instead of 5 Volts), its sensitivity results in minimal false positives for movement.
However, even with the low radiated power of the system, and the low-profile ANT-500 antenna, the
testing was successful. Measured tests showed the furthest transmission range to be approximately 50
meters, which could be increased by using a higher gain antenna. The decoding station operated from a
portable laptop with QTMM (freeware AFSK decoding software) and an RTL-SDR. Figure 3 shows
the output from the decoder.

Figure 3

 The small size of the device enables the system to be integrated into various situations, and with
proper construction and enclosure, the device can be used in most environments. The “fish-eye” lens of
the PIR sensor also allows for a wide coverage area (5m), with just a single device.

Conclusion

The increase in crowdfunded and open source radio technology represents a change in the mindset of
engineer solutions for communications; oftentimes these rapid prototyping devices offer quicker
feedback than conventional research and development methods. This project stands as a demonstration
towards the usefulness of this technology. Using commercially available components, the Hamshield
mini performs effectively as a remote PIR sensor. In further studies, the Hamshield’s capabilities can
be expanded. The Hamshield, could operate as an APRS telemetry station, due to the AX.25 packet
protocols and its compatibility with Arduino, with customize transmission data packets. This
Hamshield based APRS telemetry station also would be more cost effective compared to consumer-
grade equipment. Multiple nodes and digipeaters can expand the propagation of the warning signals
and increase their effectiveness. Overall, these commercially available component-based systems that
operate on open-source code can be expanded upon and researched for their novelty in solving amateur
radio problems.

51

References

[1] Halverson, Casey and Morgan Redfield. “Hamshield Mini – Enhanced Radio Devices.” Enhanced
Radio Devices Website, Enhanced Radio Devices, 2018. http://bit.ly/2IA0ysU

[2] Halverson, Casey and Morgan Redfield. “Hamshield AFSK Serial Messenger.” Enhanced Radio
Devices Github, Enhanced Radio Devices, 2019. http://bit.ly/3390nya

[3] Pearce, Nolan. “Motion Detector.” KE8JCT Github, 2019.
https://github.com/KE8JCT/MotionDetector

[4] “Using a PIR w/ Arduino.” Adafruit Explore and Learn, Adafruit Systems, 28 Jan 2014.
http://bit.ly/2K7ggxD

52

An FPGA Learning Experience: SPI Interface to Max10

FPGA

Gregory Raven, KF5N

greg.electricity@gmail.com

July 31, 2019

Abstract

A story of learning FPGA technology with the evolution of a simple project.

1 Introduction

This is the “Golden Age” of SBCs (Single Board Computers) and microcontroller boards. Walk into your

favorite brick-and-mortar bookstore (if you can find one), and check out the magazine shelf. You will find

several magazines, or “book-a-zines” dedicated to “Arduino” or “Raspberry Pi”. On the bookshelves you

will find a few books on Arduino and RPi, maybe even one for BeagleBone.

Or look in the magazine ”Make”, or use their “Makers’ Guide to Boards”:

Using the above webpage, you can select a “Type” of board from three categories:

• Microcontroller
• Single Board Computer
• FPGA

While there are dozens of boards listed, there are only three shown for “FPGA”. This list is not entirely

accurate, as more FPGA boards do exist, however, it gives an idea of the relative scarcity of FPGA boards.

There are a ton of resources online, and dozens of books and magazines on SBCs which you can find at

the local bookstore. The ARRL store sells several SBC themed books as well, but the web store shows

none on FPGA.

I think it is fair to say that FPGA technology has not made it very far into the ranks of hobbyists. Amateur

radio experimenters have certainly been pioneers in FPGA, with numerous “Software Defined Radio”

projects going back to the era when the devices were really expensive. FPGA is an amazing technology, a

sort of “3D printer of digital electronics”. Perhaps there are other applications of FPGAwithin the amateur

radio world in addition to SDR which can be explored?

53

I wanted to experiment with this FPGA stuff! The current crop of devices and boards has lowered the cost

of entry. This is my story of a first project in FPGA. Hopefully it can be shown that FPGA projects are

within reach, and other hams can be encouraged to try working with this fascinating technology.

2 Why?

Why work with FPGAs? Aren’t SBCs good enough?

I like to think of FPGAs as a sort of “3D printer for electronics”. A loose analogy yes, but the point is that

FPGAs allow you to create new digital circuits at will. It is HARDWARE not software! This gives you

the power to create multiple specifically targeted digital machines which can work independently of one

another. This is the capability that SDR uses to crunch DSP math very efficiently while handling data flow

simultaneously. A list of FPGA applications from Wikipedia:

FPGAs will almost certainly be used in combination with conventional “hard” computing devices (like

your laptop or Raspberry Pi). Think of an FPGA as a capability you can add to your SBC to expand its

capabilities into high-efficiency computing and the real-time domain.

3 Where to Start

When I began my FPGA quest, I was already familiar with the most common SBCs and microcontroller

boards, the Arduino, the BeagleBone, and the Raspberry Pi. It a good thing to have some experience de-

veloping with an SBC before attempting to tackle FPGA. In my case, I spent quite a bit of time developing

several projects on the BeagleBone Black. Many of the skills learned working with SBCs will apply to

FPGAs.

One of the ways I went up the learning curve on SBCs was this lecture series by Bruce Land of Cornell

University:

This course uses a PIC32 microcontroller board. However, the material in the lectures is generic enough

to apply to any board which can be programmed in C. Even better, a second course covers FPGA!

and the matching website:

Watching a few of the youtube videos gave me a pretty good idea of what was involved in FPGA work.

I didn’t use the same development board as used in this course, but I did use another Intel FPGA based

board. So the development tools and general flow of working with the FPGA are similar.

You will need to use a variety of resources to answer questions and solve problems as you go up the FPGA

learning curve. It seemed to me that most of the effort required to learn FPGA is in handling a large

54

quantity of details. You will need to spend a lot of hours viewing videos, reading, and taking notes. I think

that FPGAs require at least a little more effort than working with SBCs.

4 Your FPGA Manufacturer Web Site

You will need to get an account at your FPGA manufacturer’s website. I used an Intel based board, and

the account was free. On the Intel site, you will have access to large amounts of learning resources for

FPGA. Be prepared to spend many hours watching videos and studying documentation, whatever FPGA

you have chosen. Intel has good material, and you can learn a lot! A recommended starting point is the

video series “Become an FPGA Designer in 4 Hours”. The 4 hours part is perhaps a bit optimistic, but it

will give you a good early acceleration:

5 Github Repository for this Project

The documentation and code for this project is located in this git repository:

6 Choosing a Development Board

The first FPGA development board I purchased was the Numato Lab “Elbert V2” ($29.95) This board has

the Xilinx XC3S50A Spartan 3A FPGA device containing 1584 logic cells and 54 KB RAM. The board

has a nice selection of peripherals which can be driven by the FPGA:

• 16 MB Flash Memory
• USB 2.0 interface for Flash programming
• 8 LEDs
• 6 push buttons
• DIP switch
• VGA connector
• Audio connector
• SD card adapter
• 3x 7 segment LED
• 39 IOs

55

Note that the USB capability of this board is for Flash programming only. It is not a general purpose

interface to the FPGA.

The reason for choosing the Elbert V2 was the book “Programming FPGAs" by Simon Monk. The book

features the Elbert, along with the “Mojo” and “Papilio” boards. This book is one of the very few “hob-

byist” style books I could find.

If you have a specific application, then it will be straightforward to decide if the development board meets

your requirements. For a person motivated to learn FPGA without without a specific application in mind

should choose a board with more peripheral devices than less. Also note that the example above has

39 IOs, which allows for additional peripherals to be installed. If the IO pins are in the format used by

Arduino, the addition of peripherals will be easy to accomplish.

I was able to install the development software for the Elbert and work through a few of the projects in the

book. However, I found the development tools lacking in one area. I was interested in using a more modern

version of Verilog, called “SystemVerilog”. The development tools for the Elbert V2 do not support that,

so more searching was required.

My motivation for SystemVerilog was to try some of the new features, including those used for “test-

benches” (simulation). That is only an expression of my particular interest, as the Verilog used in the

Xilinx tool for this device is fine and can be used for maximum benefit with this device. This does, how-

ever, indicate that the development environment which mates up with the FPGA device is as important as

the device itself. So before you choose a board, be sure to download and install the development tools

first. Look at the documentation and decide if you will be comfortable with that particular development

tool capabilities.

Looking around a bit more, I found this board after viewing Bruce Land’s great lecture series on youtube:

The DE1-SOC is used in Cornell’s “ECE 5760 Advanced Microcontroller Design and system-on-chip”

course.

The board requires the "Quartus" development tool, which met my requirement for SystemVerilog. How-

ever, the FPGA on this board is well beyond a beginner! This board uses an advanced ”System On Chip”

(SOC) which is a combination of microcontroller (dual-core ARM Cortex A9) and FPGA in a single

device. Price is $249, which seemed a little steep for a project which might not work out. The added

complexity of the ARM processors, having to deal with an unfamiliar distribution of Linux running on

the ARM processors, and the all of the extra work involved seemed like too much. Indeed this board is

immensely capable, so maybe I will come back to it in the future!

Fortunately the same company, Terasic, makes boards with less complex FPGAs (and less expensive).

Searching their site, I found this board, the DE10-Lite ($85):

This looked like a good choice, and I purchased it. Later when doing internet searches, I found there are

plenty of example projects already available for this board. It seems to be at moderately popular in the

academic world, and some courses have been based on this board. The MAX10 FPGA is well supported,

although it is not included in the latest version of the Quartus development tool (latest version supported

2018).

56

A good feature of this board is the Arduino compatible expansion header. In general, the DE10-Lite has

been easy to work with, and seems to be robust. I’ve been using it for many months and it is still alive!

7 A Project Inspiration: JTAG to FTDI SPI Interface

The inspiration for this project came from a a search at github.com on DE10-Lite:

This is a nice collection of work done with the DE10-Lite board for academic purposes. What really got

my attention is the project play_gif:

The interesting feature of this project is the usage of the USB to load data (animated GIF image file) to

the FPGA. So this is a data pipeline from a Linux desktop to the FPGA which is built into the board! This

met my requirement that I be able to control the FPGA remotely from a desktop (or SBC) computer.

The interface is via “JTAG”, which is typically used as a debugging interface. It is not specifically intended

for mass data transfer, but in this case it was pressed into service.

The interface is a bit clunky to use. It requires a “TCL Server”, and a running instance of the Quartus

development tool! Not exactly what I was looking for, but I got the demo to work easily! It is very nicely

done work demonstrating several features of FPGA technology.

The way it works is conceptually simple. The FPGA part of the project implements a VGA1 interface

to the connector on the DE10-Lite board. The image loaded from the desktop computer is sliced into

its constituent “frames”. Another interesting aspect of the project is the interface to the SDRAM of the

DE10-Lite which is a 64MB external part on the board. The sliced-up image is loaded into the SDRAM,

and then another control module pages the VGA output through the memory. Thus you see the animated

GIF displayed on the monitor. Really you are seeing in a very direct manner the data loaded into the

SDRAM. Cool!

7.1 IP and Platform Designer

First, a little bit of FPGA jargon. “Intellectual Property” (IP) in the context of semiconductor devices is

a block of circuitry which has been heavily engineered and refined to perform some particular function.

It could be patented or otherwise protected from duplication by competitors. Due to the way integrated

circuits are manufactured, blocks of ”IP” can be added to the silicon and be expected to perform to the IP

owner’s specifications. Typically IP can be included as part of a design kit, or it can be paid for with a

license fee.

IP is good because it can reduce engineering design effort, improve performance, and enhance quality.

The trade-off is license fee cost, and you don’t necessarily get exactly what you want.

1VGA is a relatively simple video standard which seems to be common on many FPGA development boards.

57

In our case, we are given a whole bunch of IP for free that we can experiment with! This is bundled into

“Platform Designer” which is a tool-within-a-tool in the Quartus design suite.

To do justice to this there should be an entire section on “Platform Designer”. I will summarize here. There

are excellent video Platform Designer tutorials which you can access if you register for a free account at

the Intel web site.

“Platform Designer” is a building-block system. You get a library of IP, along with a mechanism to hook

them together. The design is bundled into a “Qsys” file. Let’s have a look at the Qsys part of the play_gif

project:

Figure 1: Play_gif project Qsys file

The upper left corner of the GUI is the library of IP. Some of the categories:

• Basic Functions
• DSP
• Memory Interfaces
• Processors and Peripherals (including a “Nios” processor)
• Memory Interfaces and Controllers

58

There is a sort of “sub-library” called “University Program” which includes:

• Audio and Video
• Bridges
• Clocks
• Communication
• Generic IO
• Memory

The project used this IP:

1. ALTPLL Intel FPGA IP

2. JTAG to Avalon Master Bridge

3. DRAM Controller Intel FPGA IP

4. External Bus to Avalon Bridge

5. Clock Bridge

6. (Parallel IO) Intel FPGA IP

The above IP can be seen in the column “Name”. There are two instantiations of the Parallel IO. In the

column “Connections” can be seen the graphical interconnections between the IP blocks. Connections are

made by simply clicking on the circles at the intersections of the “wires” between the IP. Thus an entire

system can be assembled using this GUI. No writing of Verilog required! The project does include some

hand-written Verilog. This “Qsys” design is “dropped in” to the project as a Verilog module.

Here is what the system looks like:

Figure 2: Play_gif JTAG Interface System Diagram

What this diagram does not show is the requirement for a running Quartus and a TCL/JTAG server pro-

gram.

59

The “Avalon Interconnect” deserves some explanation. This is a system bus used in the MAX10 FPGA.

From the Avalon Interface specification:

Avalon R© interfaces simplify system design by allowing you to easily connect components

in Intel R© FPGA. The Avalon interface family defines interfaces appropriate for streaming

high-speed data, reading and writing registers and memory, and controlling off-chip devices.

Components available in Platform Designer incorporate these standard interfaces. Addition-

ally, you can incorporate Avalon interfaces in custom components, enhancing the interoper-

ability of designs.

It is an internal bus standard used to connect Avalon bus masters and slaves. So it is a single-click process

to connect Avalon components in Platform Designer. It is really amazing what you get for such little

effort!

This project is interesting, and shows a path to communication between a desktop computer and the FPGA.

However, the JTAG + Quartus + TCL/JTAG Server is cumbersome. A SPI to Avalon bus IP component

is listed in the catalog. What if the JTAG and development tools could be replaced by something simpler

like a SPI bus?

So that is what evolved into my “introductory FPGA project”. The revised system diagram:

AVALON INTERCONNECT

FT232HQ
USB-SPI

SPI AVALON
SLAVE

VGA

SDRAMEXTERNAL BUS
TO AVALON

FRAME
COUNT/SPEED

Line Bu er VGA
CONTROLLER

SDRAM
CONTROLLER

MAX10

DESKTOP
MACHINE

Figure 3: Play_gif with SPI System Diagram

The significant change on the FPGA is the swapping of the JTAG Avalon bus master with the SPI-Avalon

slave. This was not entirely a drop-in replacement, as there were changes to reset and clock connections

in addition to swapping JTAG to SPI components. But it is easy, and the swapping can be done in a couple

of minutes.

External to the DE10-Lite board, there is a USB to SPI adapter board. This board is based on the FT232H

chip by FTDI. This can be bought from eBay for about $10. Search for “ft232 spi” and you will find

several options. I recommend one with headers to allow it to be plugged into a common breadboard. The

FTDI device requires a shared library (libMPSSE) to be installed:

Other changes required for SPI:

60

• The ports on the QSYS module changed (JTAG -> SPI), thus the Verilog module in which it is

instantiated required minor changes. This was done with the text editor feature of Quartus.

• Another change is required to the FPGA pins. The new SPI bus must be routed to some easily

accessible header on the DE10-Lite board. Since the board has an Arduino compatible header, and

this header has a standard set of four pins for SPI, those pins were used. The details can be seen in

the DE10-Lite manual provided by Terasic. The “Pin Planner” tool was used to make the changes.

• The “Synopsys Design Constraints” (.sdc) file was updated to incorporate the SPI bus.
Here is the rapid-prototype breadboard hook-up:

Figure 4: DE10-Lite Connected to FTDI SPI Breakout

In spite of the length of the breadboard jumper wires, the SPI interface performed remarkably well right

up to the FTDI clock limit of 30 MHz.

8 SPI Driver in Julia Programming Language

The github project from which mine was derived uses a programming language called “Julia” in the JTAG

server and for image data processing:

This was a language I had heard about, but I had never tried it. To duplicate and run the original project, I

had to install the language binary. The program does the processing of the GIF image, and then sends the

data to the FPGA via the JTAG server and USB-to-JTAG interface.

It was simple to install the server and run the Julia program. It all worked first time! Later, I installed the

Atom IDE which has a Julia plug-in. It’s great!

Rather than reinventing the wheel, I decided to use the image processing portion of the Julia program.

However, how to drive the FTDI SPI device? I needed something to replace the JTAG server.

61

The FTDI USB-to-SPI device is supported with a C shared library. This library has the initialization, read,

write, and shutdown command necessary to work with the device.

Fortuitously, the Julia language includes the capability to call C library functions in a very direct way! I

was skeptical at first, but I quickly had the SPI device’s initialization function running and returning with

no error. The other required functions were quickly added. I now had full control of the SPI bus from the

command line!

When I say “command line”, in the case of Julia I am referring to the “Read Eval Print Loop”, called the

REPL. This functionality is similar to Python, and is my favorite way to develop code. I also used the

“Atom” IDE, which has a plug-in for the Julia language. It is a new language, and has a few quirks like all

of them do, but so far I am impressed!

At first, Julia was also used to access a shared library which was taken from an Altera demo project of

the SPI-Avalon bus master. This library was responsible for reading and writing “Avalon Packets”. This

is the protocol used by the Avalon bus. I was able to successfully translate the Altera library to Julia. This

is working well and the system is able to read and write to the SPI and thus the FPGA Avalon bus, the

parallel ports, and the SDRAM.

DE10-LITE

MAX10
USB SPI

VGA
MONITOR

JULIA
CODE

ATOM IDE

UBUNTU
18.04

FT232H
SDRAM

DESKTOP

Figure 5: Project System: Desktop -> USB-to-SPI -> FPGA -> VGA Monitor

The Julia code is located in the “src” directory of the github repository linked in the introduction.

9 FPGA and Verilog Books

Notes on books which might be useful to an FPGA beginner.

9.1 Hobbyist FPGA Books

"Designing Video Game Hardware in Verilog" Steven Hugg, first printing 2018

A very practical introduction to digital hardware using the early history of video games as a means of

illustrating the technology. The book includes significant introduction to Verilog and its relationship to the

physical circuitry.

62

However, it is not primarily an FPGA book! The reader is encouraged to use a web-based Verilog simula-

tor:

There is an example FPGA which uses the iCE40HX-1K iCEstick. This is a low-cost device ($40 on

Amazon). Development can proceed with the official Lattice tool chain, or with an open-source system

known as “IceStorm”:

“Programming FPGAs, Getting Started in Verilog” Simon Monk, 2017 McGraw-Hill Education

Good coverage of beginning FPGA using the boards Elbert 2, Mojo, and Papilio.

9.2 Verilog

You will need to go up the learning curve on Verilog (or VHDL). Here are a couple of inexpensive books

(< $20) which will get you going:

“Designing Digital Systems with SystemVerilog” Brent E. Nelson, Brigham Young University

“Exploring Digital Logic” George Self.

10 Simulation

The FPGA developer should develop skills in FPGA simulation. The “blinky LED” project I attempted

prior to the SPI bus project required me to do that. I had a minor, but persistent bug which brought my

work to a halt. Trial and error with the board and re-doing the FPGA got me nowhere fast. After I had a

simple simulation running, the problem was quickly resolved. Fortunately the Quartus tool does most of

the work to set up the simulation. A small bit of hacking of “do” (TCL) files is required.

I recommend using the resources on the Intel web site to explore the basics of setting up and running

simulations via Quartus.

11 Conclusion

I was able to find an FPGA development board and “starter project” that met my requirements for a

beginning in FPGA development. A bare minimum of Verilog modifications were required to make the

project function correctly.

63

Most of the FPGA “design” was done using the system-level “Platform Designer” tool.

I was able to add memory-mapped read of the SDRAM and FPGA registers via analysis of the Avalon bus

structure. The Julia programming language was used to create and decode Avalon bus transactions. Direct

access of the SPI device C shared library from Julia code was used.

The next stage of the project will be a practical ham radio application. I have an antenna rotator which I

want to control via wireless. I think it will be possible to create a real-time state machine on the FPGA

which will handle the motor drive along with a Hall sensor and counter for positional feedback. Driving

the FPGA from the SPI port of an SBC, along with a WIFI connection, should allow the entire control unit

to be wireless. Solar powered? Maybe.

64

Modulation – Demodulation Software Radio
Can Earthquakes change and create Shortwave Propagation?

(A 4-year study of measuring background noise and propagation concludes that this is the case.)

Goups.io user group: https://groups.io/g/MDSRadio

MDSR website: http://users.skynet.be/myspace/mdsr

Alex Schwarz, VE7DXW, alexschwarz@telus.net

1. Intro:

There is well-established scientific evidence (ref 1,2) that earthquakes cause changes in the ionosphere.
Experimental results, reported here, support that conclusion by presenting recorded changes in the
ambient noise level at shortwave frequencies during an earthquake.
Furthermore, recently published experimental results from Los Alamos National Laboratories (ref 3)
for the Cascadia fault, and theoretical results (ref 4) predicting that sound waves carry inertial mass,
show that tectonic effects can be detected prior to the release of an earthquake, contrary to the current
scientific consensus (ref 5).

The RF-Seismograph recorded such an event on Nov 1st. The spikes and the signal dropouts that were
recorded could not come from space, due to solar inactivity (see case study in article). It also caught
the eye of the RF-Seismograph team and we went and investigated the phenomena. At the same time,
while listening to the local news radio station, it was announced that there had been an earthquake, a
M4.9, just north of Vancouver Island! The times of the quake and the measured spike matched in time!

Now, the RF-Seismograph team has been collaborating with USGS to find a correlation between HF
propagation and earthquakes. USGS has provided us with a list that contained 171 M6+ earthquakes
for the 4 years the RF-Seismograph has been collecting data.

We have recreated the data of the propagation and noise level measurements on days that had a M6+
earthquake and see how much of a change there was visible in our measurements. The findings will be
discussed in the following pages.

Using the RF-Seismograph, we are slowly starting to understand more on how the field lines that
earthquakes create behave and change propagation. Considering the fact that there are over 1000
quakes (mostly small ones) every day, it becomes quite clear that earthquakes are responsible for a
large part of propagation, especially on the lower bands and during solar minimum.

Note: The RF-Seismograph system was developed to measure and collect data on the changes in the
ionosphere and radio propagation during the solar eclipse. It uses a shortwave radio and a multi-band
vertical antenna to measure background noise and amateur radio transmissions. After the eclipse the
team decided to leave the RF-Seismograph running, and now we are in the 4th year of operations. For
more info on RF-Seismograph go to: http://users.skynet.be/myspace/mdsr/index.html

65

1. History of HF Monitoring
To monitor the HF background noise and to intercept radio signals is nothing new. It has been done by
the military for a long time. They must have seen the same spikes, noise increases and propagation
changes, but could not correlate the events with earthquake times. So most of the noise changes were
considered to be unknowable or caused by the sun and ignored.

 Fortunately, we now have the Internet. We can now easily call up information on earthquakes with an
amazing detail and on a real time basis; thanks to USGS. The Internet made it possible for us to gather
all the information and correlate the times of the earthquakes with the reception of signals and the
interference caused by them.

Picture of the AN/FRD 10 HF Monitoring Station, Galeta Island, Panama

Technical information

 Country of origin: United States
 Introduced: 1961
 Type: Wullenweber antenna array
 Frequency: Low Band 2 MHz - 9 MHz; High Band 9 MHz - 32 MHz
 Inner Array Antenna radius: 393.5 ft (119.9 m)
 Inner Array Reflector radius: 366 ft (112 m)
 Outer Array Antenna radius: 436.75 ft (133.12 m)
 Outer Array Reflector radius: 423.5 ft (129.1 m)
 Range: 3,200 nautical miles (5900 km)
 Antenna Cost (1970): $900,000 ($5.81 million today)
 Electronics Cost (1970): $20 million ($129 million today)
 By combining multiple stations, a radio signal could be traced to a 100 km2 area anywhere in

the Atlantic or Pacific.

66

A total of 16 stations were built, 14 in the USA and US bases around the world, and 2 in Canada. The
2 located in Canada and the one in Puerto Rico are still in operation by remote control; the rest have
been demolished.

2. How do Earthquakes create Electromagnetic Fields that change propagation?
The science on electromagnetic fields of earthquakes has been discussed for many years and excellent
papers and books exist on this subject (see reference at the end). But geologists have never embraced
this part of an earthquake, because it is dangerous and cumbersome to collect data on site. Most of
their instruments are mechanical and need to be on location in remote, inaccessible parts of the planet
to work properly.

The piezoelectric effect and micro-fractures are the main contributors of electromechanical processes
during an earthquake. All of them have been confirmed in lab tests as valid physical processes that can
create electricity using mechanical energy. When free electrons flow along the path of least resistance
field lines are generated. Field lines are a part of electricity and do not exist on their own. Since all the
processes must occur before the quake, it will be possible to measure the changes several hours before
the quake releases.

How does an earthquake build up before the actual release of mechanical vibration
 Piezoelectric effect of rocks sliding and vibrating on top of each other.
 Micro-fractures of rocks releasing vast amounts of free electrons.
 Electrons move up towards the surface or sea-floor and circulate around the quake area.
 Electromagnetic fields start to emerge out of the earth crust and move upward towards the

ionosphere.
 Since the ionosphere contains charged particles, the magnetic field interacts with the ions and

creates a hole or a dome of charged particles, affecting radio waves passing through (see
graphic below).

 For more information see Scientific American Oct. 2018: “Earthquakes in the Sky” and
reference at the end.

67

3. Distortions of the Ionosphere by Earthquakes
The ionosphere is constantly morphing. Well understood is the impact of the solar wind and solar flux
on the ionosphere and the earth’s magnetic field. The 24 h day and night and seasonal changes are very
well represented in models that we use every day to predict propagation.

The image below shows how magnetic field lines of an earthquake reach into the ionosphere and
disturb or bend the layers, breaking existing radio paths or creating new ones. The signals which the
RF Seismograph receives drop out, or new connections only last for a few hours while the quake is
active.

This can be seen as the equivalent of a magnetic field shooting out of the surface of the sun. Because
of the hot plasma, the field lines are visible. This process on the sun is much more energetic than an
earthquake here on earth, but the physics are the same.

68

5. How are earthquakes
The different stages of the quake as seen by the RF-Seismograph

 (Case study for M4.9 event, 256 km SW of Pt. Hardy, N-Vancouver Island, BC)

 Energy buildup – noise increases on 80 m (red) starting at 00:00 UTC.
 Disruption of 40 m, 30 m and 20 m bands – communication dropout (lines go flat).
 Quake releases at 04:23 UTC.
 The energy buildup and blackout continues after this quake for the same time the before

the quake (2 h) for at total of 4 h.
 After the energy is released, the ionosphere starts to rebuild slowly and normal

communication continues.

Note: The sharp vertical spikes are static crashes. They can also be produced by breaking field lines.

69

6. Comparison: RF Seismograph vs. Ionosonde
The fault line north of Vancouver Island is very active. It releases medium-sized quakes multiple times
per year. Usually there is one larger tremor with several aftershocks. Such a series of two earthquakes,
within 1 h, have occurred in the Pacific, NW of Vancouver Island on 22nd April 2019. Both of them
were picked up by the RF-Seismograph; the first one, on 80 m (top graph, top line) and second one on
40 m (top graph, bottom line). The Ionosonde at Arguello Pt. (lower graph, thick line) picks up the
changes as well and even shows the individual quakes as spikes. Even though the Ionosonde and the
RF-Seismograph measurements agree in this case, the Ionosonde network does not pick up quakes as
easily as the RF-Seismograph.

There are three big difference between the RF Seismograph and the Ionosonde
 The Ionosonde only measures in one direction vs. the RF-Seismograph, which will pick up any

signal from any direction with its omnidirectional multiband antenna. The main focus of the
RF-Seismograph antenna is on the horizon, except for 80 m which uses NVIS (Near Vertical
Incident Skywave) propagation.

 The data capture time for each frequency is 7 s with and interval of every 52 s. The Ionosonde
records changes in the ionosphere only every 15 minutes! The minimum frequency of an
earthquake as described in “Computation of seismograms and atmospheric oscillations” (see
ref. at the end) is 0.00368 and 0.0044 Hz, with two ground periods of 271 and 227 s. Both
frequencies are too fast for the scan time of the Ionosonde network.

 The RF-Seismograph is passive and listens to all digital amateur traffic on the bands it scans. It

works like an oblique Ionosonde with no fixed transmitter. The RF-Seismograph uses RX only
and therefore does not need a license to operate.

70

RF Seismograph Lynn Valley (top graph)
 detects a disturbance starting at 19:00 UTC,
 measures a peak on 80 m when the first quake releases
 measures a peak on 40m before second quake

Ionosonde – Pt. Arguello (bottom graph)
 detects a drop in the foF2 frequency at 19:00 UTC
 measures a peak during the first quake
 measures prolonged peak during second quake

Note: one measurement only every 15 minutes

71

7. Comparison: RF Seismograph vs. standard Seismograph
The USGS has a website where anyone can create their own seismogram (see ref. for details). This is
how we recreated the black full wave graph of the M7.5 event that occurred in Papua New Guinea on
6th of May 2019. The RF-Seismograph also recorded this quake, and matching the two would proof
that both were created by the same event.

 Earthquakes are very distinct and the wave energy released is like a finger print.
 The black graph is a full wave representation of the physical shock waves recorded by

USGS.
 The red graph is the recording of the event on the RF-Seismograph (RMS) on 80 m. The

main shockwave energy level and timing match the recording from USGS, confirming that
both are caused by the same event.

 Since mantle shockwaves travel at different speed the events arrive at different times at the
recording stations.

 Phasing distorts the outer pattern of the signals that travel over 10000 km in different media
(crust vs. air).

72

8. The 4 Year Propagation vs. Earthquake Study

Why is it so difficult to prove that earthquakes have electromagnetic properties?
In previous studies the measurements were done on location, mostly using portable VHF radios with
small antennas, and only one specific quake was measured at a time. This makes it very hard to ‘catch
the quake in the act’. It is also very dangerous and time consuming. If one stands right in the field
dome and transmits VHF radio waves, they are at a steep angle to the field lines. The radio waves also
penetrate the ionosphere perpendicularly. The ionosphere refracts VHF very poorly, making
measurements difficult. In order to actually measure the effect on propagation with the RF-
Seismograph, one has to be at least 500 km away from the quake and HF frequencies have to be used.
This is necessary because we want to measure the radio signals that bounce back from the disturbed
ionosphere.

Why is this study different?
Once we realized the very chaotic nature of earthquakes and linked this to the RF noise they generate
(electromagnetic white wideband noise, from 0.0044 Hz into the VHF range), we understood why it is
possible to study almost all earthquakes from one location (besides triangulation). By using HF and
considering the fact that earthquakes can create RF signals that have several megawatts of power
output (possible even more), they are easy to pick up on 80 m. By correlating the time of the quake
with the spike on 80 m we can also verify the changes in propagation by the field lines as measured by
the RF-Seismograph! The RF-Seismograph combines both events in one graph for easy verification.

• In all, 171 earthquakes were studied: All M6+ events from the beginning of our recording (Aug
2016) to today. Events were provided by USGS, and the quality of the data is high.

• 961 days of recorded data with 171 M6+ quakes amount to one major quake every 5.6 days.
Approximately 17.3% of background noise is affected by these strong events. Since we only
looked at 6+ events, we can conclude that a lot of the background noise we monitor is also
created by smaller seismic events (and there are a lot more of these). If one looks at smaller
quakes the (<M3.0) the earth really never stops shaking. There is a lot of energy even in small
quakes and they are the major source of the rumble one hears when a HF rig is set to 160m or
80m. It would be interesting to take this experiment to a different planet or moon and see if this
is actually the case.

• Only 15 quakes did not have RF noise associated with them.

• 1 day out of 961 was not recoverable due to data loss.

• In 26 cases the time of the disturbance did not match the time stated in the USGS report.

• In 122 quakes (72%) we were able to see a noise increase in the 80 m band either before, after
and before and after the quake released. The “before and after” is the most common one. More
analysis is needed.

• Introduction and Study of Earthquakes (also see also ref. at the end)
http://www3.telus.net/public/bc237/MDSR/IntroductionRF-SeismographandEarthqakes.pdf

• The study is still continuing and we need your help to set up more monitoring stations.

73

9. How to store and search the data we have collected
The data storage is at the moment a simple text file utility. Every day the RF-Seismograph spits out
one csv file that has 1661 lines of data. One record = 6 measurements every 52 s. At this moment there
are about 1000 individual files. They are uploaded to the group on regular bases for backup and access
of group members.

The data is accessible to all IO User group members – membership is free, so please join us! The data
files are kept in the files section at our https://groups.io/g/MDSRadio group.

Sample Data:
Timestamp – f [kHz] 3576 7076 10138 14076 21076 28076

06 07 2016 23:56:12 [dB] 38.59 49.25 47.87 46.16 51.56 55.76

06 07 2016 23:57:04 [dB] 37.61 50.71 48.69 46.3 51.47 56.25

06 07 2016 23:57:56 [dB] 38.21 50.9 47.52 47.35 51.3 55.92

06 07 2016 23:58:52 [dB] 39.3 50.03 47.52 47.27 50.16 55.55

Note: The data collection times have deliberately been kept off the common 1 minute markers and are
pseudo random to avoid synchronization bias with digital broadcast.

The future storage of data
We would like to see that all the data gets put into a SQL data base. So we are looking for volunteers
who are willing to spend some time to get this set up. If you are interested in this please contact us.

Conclusion
Earthquakes are very hard to hear on the radio, but their effect on propagation is undeniable and easy
to measure. Shortwave radio operators use the propagation created by earthquakes every day and do
not know it! Most of us believe or have been lead to believe that this propagation comes from the sun,
which is only a small part of the story. With earthquakes in the picture a new era of propagation
research can begin and amateur radio operators are at the edge of new science, again!

Now we come to the big question: Is it possible to predict earthquakes and evacuate people before the
event? With the provided measurements it seems that most quakes have a precursor noise level that
could be detected and used to alarm a region. It will certainly add another useful tool to the
measurements of earthquakes and it will create more certainty that a region is actually getting shaken
to a level that causes damage and cost of life. Combined with regular seismographs, it could improve
prediction, but clearing an area and then have nothing happen is the worst nightmare of any official; or
even worse, after the all clear is given, disaster strikes!

74

References:
(ref 1) Philippe Lognonne, Eric Clevede, and Hiroo Kanamori, Geophys. J. Int.(1998) 135,338-406

http://www3.telus.net/public/bc237/MDSR/Atmosphere Osc.pdf

(ref 2) Juliette Artru, Thomas Farges and Philippe Lognonne, Geophys. J. Int (2004)158, 1067-1077

(ref 3) https://twitter.com/LosAlamosNatLab/status/1111386164995321856?s=20

(ref 4) Angelo Esposito, Rafael Krichvsky,and Alberto Nicolis, Phys. Rev. Lett, 122,084501(2019).

(ref 5) Robert J. Geller, David Jackson, Yan Kagan, and Francesco Mulargia, Science 14 March 1997;
Vol 275, Issue 5306 pp. 1616 DOI:10.1126/science.275.5306.1616

Scientific American Oct. 2018: “Earthquakes in the Sky”

http://www.ep.sci.hokudai.ac.jp/~heki/pdf/Scientific_American_Vance2018.pdf

Earthquakes Canada: http://www.earthquakescanada.ca

U.S. Geological Survey: https://www.usgs.gov/

Sergey Pulinets, Kirill Boyarchuk, Ionospheric Precursors of Earthquakes, ISBN 3-540-20839-9
Springer Berlin Heidelberg New York

Northern California Earthquake Data Center (hosted by the Berkeley Seismo Lab)

http://ncedc.org/bdsn/make_seismogram.html

Access to Study for 2017, 2018 (2019 is part of 2018):

http://www3.telus.net/public/bc237/MDSR/Matches-RF-Seismograph and Seismic data for 2017.pdf

http://www3.telus.net/public/bc237/MDSR/Earthquakes visible with RF-Seismograph 2018.pdf

Support for the RF-Seismograph for Linux and Raspberry Pi: https://groups.io/g/MDSRadio/

Download MDSR software for PC from: http://users.skynet.be/myspace/mdsr/

Our SciStarter project can be found here: https://scistarter.org/rf-seismograph

75

76

77

78

79

80

81

82

83

84

85

86

87

GPSWatch Technology

From what I can work out, I am a bit unusual in the ham radio world. In addition to being active in
amateur radio, and being on the board of TAPR, I am a mad keen runner. I started running about four
years back, and have never looked back.

After doing my first marathon1 at the end of last year (2018), I was looking for a new challenge, and
decided to try trail running. Whereas most running events are on roads or paths, trail running
involves running in the great outdoors away from civilization. And without the limitations of where
cars can drive, trail runs tend to be hillier.

You might have worked out from my callsign that I don’t live in the USA. I actually live about an hour
south west of Sydney, in Australia. This is an amazing part of the world, and we are blessed with
some amazing places to go running. My first marathon started by running over the Sydney Harbour
Bridge, and finished at the Sydney Opera House.

But there are some other amazing runs nearby. This coming winter I planned on doing my hardest
marathon ever, on a course about three hours west of Sydney. The event is the Glow Worm Trail
Marathon2, and is in an area that could well be described as the middle of nowhere. Not really the
middle of nowhere by Australian standards, but its certainly in a rather secluded area.

The closest town is Lithgow, an hour away, with a population of 21,000. Wallerawang (or Wang as it’s
known by the locals) is closer, but has less than 2000 residents. The entire Marathon is away from the
townships in fairly rugged terrain. In fact, you need to drive about seven miles on a dirt road to get to
the start line of the event. Cellular service is non existent, and satellite phones work poorly due to
the hills.

The area is so rugged that the Wollemi Pine that grows in the area was only know to exist in fossil
records until 1994, and is now the only known survivor of a family of trees over 40m years old.

The event starts and finishes at Newnes, a place that these days consists of just a campground and a
general store to support the campers. It has been like this following the dismantling of the railway
line in 1940, and closure of the hotel in 1988 following a flood.

https://www.glowwormtrail.com/

88

The event itself consists of two distinct halves. The first half involves running up a hill, over it and
down the other side towards Glen Davis, before returning to the start line the same way. The 13.2
miles3 involves about 3894 feet of climb4, none of which is on concrete or asphalt.

The second 13.2 miles is thankfully somewhat easier, with only 2345 feet of climb and decent. It also
contains the reason for the event – an old rail tunnel about a third of a mile long inhabited by
glowworms. That is over a mile of elevation up and a mile back down.

The thing is, I am a fairly good runner. Not the greatest, but I am normally in the top 20% in the races
I enter. This year alone I have managed to get under 20 minutes for the 5km and under 3 ½ hours for
the marathon. I worked out that running the 26 mile Glow Worm Trail Marathon would probably take
me a bit over five hours, non stop!

To give some perspective, this is the equivalent (if you could do it) of starting in the Yosemite Valley,
running up El Capitan, and down the other side. And then turning around and doing the same thing
again, all in the space of 26 miles! And if you think this sounds bad, I am already planning a 31 mile
race next year, with 7800 feet of elevation5!

The entire event takes place in rain forest, in the middle of the Australian winter. I should note
however that winter in this part of the world is a relative term, with the conditions likely to not go
much below freezing, even overnight. Unfortunately, they likely won’t get much above freezing for
the entire race, but these are the conditions you prepare for.

Thankfully the conditions were not as bad as the run a friend did in Texas a couple of years ago whilst
on holidays. This was a much shorter run, and she was wearing a half gallon hydration pack filled with
drinking water. During the run, the water froze solid. She tells me that event even surprised the
organizers with how cold it was.

Given the harsh bush land and the remoteness, event communications are very important. Runners
are known to push themselves too hard, not eat and to get injured during events. In a previous event,
a runner was badly injured when a tree fell on her whilst she was running. Parts of the course are so
steep that if they were any steeper and you would need to start rock climbing.

For the last couple of years, event communications has been handled by WICEN, the Australian Ham
Radio emergency communications organization as a training exercise. This year they are aiming to
improve the communications on the course by determining the best location for their repeater.

89

The great thing about this event is that there are a ton of spots where you can put a repeater. The
bad thing is that testing the coverage is a chore. Even getting the repeater installed is difficult, and
involves a 2 3 hour trek from the closest parking.

Coverage Site Survey

Over the Easter in mid Autumn, WICEN wanted to try out a new spot for their repeater. This provided
me with a chance to check out the course whilst providing reports of the radio coverage.

The idea was that we would run two parts of the course – we would warm up by running about half
of the first half of the course, for a total of about 5 6 miles, and then run the second 13 mile half in
full. Alas, things didn’t turn out that way.

Unfortunately the guys from WICEN were unable to get to their preferred repeater position on top of
the mountain. What looked good from the topographic maps and the satellite photos wasn’t so good
in real life. After some effort, they found they would need to climb up a 30 foot sheer cliff, which
meant the radio test was no longer possible, and also ruled out that spot for a temporary repeater
too.

The problem was that this area is not well surveyed, and the shadows on the satellite photos covered
the sheer cliff. They mostly wanted to check the coverage on the second half of the course, meaning
there was no need to run any further. You can check out where I did run on Strava6. I will definitely be
heading out there at some stage to just explore the area.

Despite not achieving the aims of the test, I can at least talk about the equipment we were using out
there, and how it works.

Radio Gear

As an article about Ham Radio, there is actually quite little to say about the radios we used. During
the event WICEN are planning to use DMR digital voice repeaters, but during the test 2M FM was all
we needed to use.

Both the WICEN team and myself were using 8W Baofeng dual band handhelds. These radios are
inexpensive and did what they needed to do. As a bonus, in this remote area, they are unlikely to
cause any interference on the off chance they are not as spectrally as pure as they should be. And
Baofeng has been notorious, at least in the early days, for lacking rigorous engineering.

90

I had the opportunity to speak to one of the members of the radio team on a different event after
visiting Glow Worm. They told me that for the Ultra Trail Australia7 (UTA) event they run multiple
repeaters because of the terrain. In case of communications issues on course, they have a team of
operators with 13 element UHF Yagi’s they can point at the repeaters to provide event
communications.

Garmin Forerunner 935

A few members of the running club are partial to the Garmin Forerunner 935 GPS watches. Part of
this is that they were significantly discounted last Christmas, but they appear to be more reliable8
uploading data than some other brands. The watch itself has a passive 64 color LCD display with
backlight, GPS/GLONASS, along with heart rate, compass, altitude and cadence monitoring.

Also included are Bluetooth and WiFi. Bluetooth is used to connect to the mobile phone app, which
sends data to the Internet should you need that. But Bluetooth has another function in this watch –
when you are trying to get a GPS lock, the watch will attempt to use the phone GPS to determine the
current position, and likely also to download the current GPS almanac showing the position of all the
GPS satellites. This reduces the time to get GPS lock significantly, and dramatically improves battery
life.

In this mode, I can log my runs with GPS data for well over 12 hours and probably closer to 24 hours
per charge9. There is a mobile phone app that uses Bluetooth, although the watch also has WiFi built
in. Bluetooth is more energy efficient, and is used to talk to the phone.

A comparison of watches whilst out running shows that a watch paired to a phone running in Low
Power Mode takes a lot longer than a phone paired to a phone operating at full power. This means
that whilst my watch will generally get GPS lock almost instantaneously, the other watch can take up
to a minute to lock. This is likely because the watch downloads positional and GPS satellite almanac
data from the phone reducing the time to fix.

One of the surprising advantages to this watch is that it uses physical buttons rather than a touch
screen. Runners are often sweaty, and touch screens don’t tend to work as well when the screen is
wet. With physical buttons, it doesn’t matter how wet things are. Whilst the manual suggests not

91

using the buttons under water, us runners are crazy and will run in almost any conditions, day or
night.

There are two features that are missing from this watch that are present on the higher end models.
The first is that this unit does not permit the storage and playback of MP3 files. This can be an issue
for some people – personally I just play MP3’s from my phone, whilst my running companion has
headphones that she has loaded MP3 files onto.

The other missing feature is the capability to use this watch as a Credit Card. Garmin has their own
solution similar to ApplePay allowing people to pay by credit card using the Paywave non contact
RFID technology. In this case, the watch would use RFID to communicate with the credit card machine
to authorize payments. Had it been present, I would need to enter the PIN number on my watch once
a day, and whenever I took the watch off. Once again, I use my iPhone instead.

Mapping

One of the other cool features of this watch is the ability to upload a route to the watch, and it will
warn you when you go off course. This is a really cool feature, and was rather useful on this run.
When I went off course, I managed to work this out after a few hundred feet thankfully.

Alas, since this is a cheaper model, it doesn’t have base maps showing streets and other features. As
nice as they would be, when you are running off road, trails are often not well documented, even on
web sites like OpenStreetMaps.

When I am following a route, I normally have it zoomed into a few hundred feet so I can work out
where I am going relative to where I am. The watch does display a small arrow pointing at a direction,
but this does not always work in areas of poor GPS coverage.

I did hear a report from the actual Glow Worm event where someone sabotaged one of the races,
changing the markings on the trail causing some runners to take the wrong course. This is the first
time I have heard of this happening during a race. Having the map on the watch whilst running at
least warns you that something might be going on.

Having said that, I have also run in races where the organizers have changed the course at the last
minute and forgotten to tell anyone, so no plan is foolproof. In another case, the marshals incorrectly
located a turn around point in the Bangkok Half Marathon. They accidently added about 2½ miles to
the course. All they could do after the event was re issue the T Shirts with the actual distance listed.

At this point I should point out what I mean by an area of poor GPS coverage. For GPS type devices to
work properly, they ideally need to be able to see the sky right to the horizon in every direction. Alas,
the human body tends to get in the way, but thankfully this isn’t too much of a problem with modern
devices. More of an issue is when there is terrain or buildings that restrict the ‘view’ of the sky.

92

When the view is restricted, GPS is not able to cope as well, particularly with reflected radio signals.
This tends to increase the positional error. Thankfully in my experience with watches and phones has
tended to be under a couple of hundred feet, and is normally a lot less.

The worst I have ever seen was about 15 years back with a GPS tracking unit I was developing and
had mounted in my car. The car and GPS was under my carport, and the GPS ‘lost it’. Whilst the car
was safely parked, the GPS was reporting a journey of about 150 miles at a speed of about 300 miles
per hour. What I think happened was that the software in the receiver failed and started tracking one
of the GPS satellites by accident.

In many ways, the watch reminds me of 20 year old Garmin eTrex or Garmin 12 devices, and I suspect
that there are still parts of that firmware living in this device.

If you do get lost, the watch has the ability to guide you back to the start, either by using the route
you went or direct line of site. This can be a useful feature, although I haven’t needed to use it yet.

Routes are loaded by copying a GPX file onto the device. There are some smart ways to do this
wirelessly, but the watch also emulates a GPS thumb drive. I tend to use MapMyRun when designing
routes and upload them wirelessly using http://dynamic.watch

If the run is one that someone has done before, as a premium Strava subscriber, I can download
other peoples runs as a GPX file and upload it onto my watch.

I must say one of the best uses of the route functionality was last Christmas when I wrote the words
‘Merry Xmas’ in several hundred feet high letters running around the streets near where I live. This
run was designed earlier in MapMyRun and the watch told me exactly where I needed to go.

Heart Rate Measurements

The watch measures the heart rate using physical properties, rather than the more common electrical
ones, using a photoplethysmogram10. To do this it shines a green light onto the skin and monitors
how much light gets absorbed. When the blood is flowing past, the amount of green light being
absorbed increases. It can actually read the pulse not only in arteries, but also in subcutaneous
tissues.

This does rely on the watch band being reasonably tight so that the back of the watch with the green
LED is in constant contact with the skin.

Some runners prefer to use an electrical heart rate monitor around their chest that sends data to the
watch via Bluetooth or the related ANT+ protocol. These can work well, although I have found in the
past that my phone ‘steals’ the data from other people’s heart rate monitors depriving them of the
data. This appears to be related to the ANT+ protocol.

https://en.wikipedia.org/wiki/Photoplethysmogram

93

Being able to monitor heartrate has some great health benefits. As a middle aged male runner, I am
in the demographic that seems most prone to having a cardiac event whilst running. In fact, during
the recent UTA22 race, my heart rate spiked about 20 25 bpm for a couple of minutes, before getting
back to normal.

Based on this, I now have an alarm on the watch telling me whenever my heart rate is higher than it
should be. Sometimes there might be a reason for it, but the alarm is a good indicator that I need to
be careful.

Since I wear the watch 24/7, it also keeps a track of my average resting heart rate. Depending on how
much running I am doing, this is between 50 and 60 bpm. The more running I am doing, the lower the
resting heart rate.

Sensor Fusion

Obviously devices such as watches have very small batteries, and need to save energy in any way they
can. Anything with a radio transmitter or receiver in it will use up a heap of energy. So ideally, you
want to have any radios turned off as much as possible. One of the major battery drains here is the
GPS to determine the position and speed of the device.

GPS watch devices save energy by combining data from many sources. This is commonly known as
Sensor Fusion11. This combines data from desperate sources with the aim of generating more
accurate information in the process.

Data sources include three a dimensional compass, accelerometer and gyro, along with an air
pressure sensor, giving a total of 10 degrees of freedom. 3D GPS data is also included giving a total of
13 degrees of freedom. Sensor Fusion would use this information to determine the following details:

 Cadence of the runner (Steps per minute)
 GPS Position
 Speed
 Elevation

https://en.wikipedia.org/wiki/Sensor_fusion

94

One of the important things about sensor fusion is that each of the sensors needs to be measured at
the exact same time wherever possible. This is particularly important for the compass, gyro and
accelerometer. Essentially an integral is applied to the data, and if the points don’t line up, there will
be mismatches in the results.

Unfortunately, determining these details is not always that simple. Not all these data sources are
available all the time. Pressure sensors often get blocked with water or dirt, particularly when
running on trails. GPS receivers may only be turned on for a moment every few seconds.

Kalman Filters

And then there are the errors. Each of these sensors have errors, so the job of Sensor Fusion and
Kalman Filters12 is to determine what the most likely correct solution is, such that the data from each
sensor is used, and that errors are minimized.

Think about the average runner. They will be running somewhere between five and 12 miles per
hour, and will likely be moving horizontally. When moving vertically, such as on a ladder or stairs,
their horizontal speed will be significantly slower.

With this in mind, algorithms and filters are then tuned to search for solutions mostly within a certain
range from the last known good position. Using the accelerometer to determine the number of steps
being taken is a great way to hone in on the correct result.

An easy way to think about this is by assuming that we know where we are now. If we can work out
how many steps a minute the runner is taking, that gives us a fairly good idea where they will be in a
minutes time. When you pull in the other data, even without an updated GPS position, you can make
a fairly good guess as to the new position.

The guesses are not perfect. An example was a runner who discovered that when they work out on
the treadmill that their distance was off by over 10%. This is probably because she takes smaller steps
on the treadmill thanks to its incline. Thankfully the watch has a manual calibration mode, which
tunes the internal filter. Once the unit was calibrated, it was accurate within about 1% of the correct
distance.

This is an easy to understand example of tuning algorithms and filters. Things get a lot more complex
when you escape the gym and get into the real world. Thus, one of the first real life applications of
Kalman Filters was actually with the Apollo program to take man to the moon! And in case you are
wondering, I don’t understand most of the Kalman Filter Wikipedia page.

95

Strava

Although I have mentioned it already in this article, I guess I should describe what Strava13 is. In
essence it is a social network predominantly for runners and bike riders, although other forms of
physical activity are also included.

Rather than people posting photos of cute puppies (which I am sure must exist on the site), people
upload the GPS traces of their runs and rides. These traces are timestamped so that people can see
exactly how fast you went at every point, and where you went. It can also include details like heart
rate and running cadence. Friends can then give you likes, or ‘Kudos’ for your runs.

But Strava goes further than that. Subject to privacy settings, it correlates your runs with others, and
indicating who you ran with. Users can also route segments that are used as virtual races. After every
run, Strava works out your time on the segments and reports on this. It also allows you to compare
your time with others, creating a virtual race.

Like much technology, Strava does have significant privacy implications. They made the news due to
their ‘Heat Map’ feature which allows you to zoom into any part of the world and see what the
popular courses are. The problem was that Strava was being used by troops in the middle east. This
was identifying the locations of those troops and where they trained.

Some Interesting Runs

Alas, Sensor Fusion does not always get things right. Below is the graphic from one of my runs earlier
this year, where I was running up and down a hill14. The hill can clearly be seen, but each of the peaks
and troughs should be the same as I was just going up and down the same hill. I also started and
finished in the same location, so the start and finish of the plot should be the same height. The two
are actually out by about 88 feet.

My guess is that this is related to a change in air pressure that happened late in the day. As a rough
guide, air pressure decreases for every 30 feet of elevation by 1 hectopascal (hPa). Standard
atmospheric pressure is 1013 hPa or 101.3 kPa.

Modern air pressure sensors have the resolution to determine climbing a single step, somewhere
around 0.02 hPa. Whilst they have great resolution, their accuracy in determining elevation is not
that great. The problem is not the sensors, but mother nature. These sensors can only read air
pressure, and air pressure can change enough to cause issues. In this example, a low pressure change
of 3 hPa over thirty minutes could have caused the issue.

https://www.strava.com/athletes/11527827

96

These types of problems are generally corrected by calibrating the pressure sensor using GPS altitude
as well as other information sources. As can be seen here, this is not always successful.

Another example shows a comparison of my pace doing hill repeats compared to the hill15.

In this case, the hill does look like an almost perfect triangle wave. The pace looks like a rather noisy
square wave, which is what you expect. I got slower every time I ran up the hill, but I generally ran
faster going down the hill than running up.

97

More interesting is the comparison of heart rate to elevation. In this case, the heart rate is an almost
perfect square wave. These are the sort of effects you would expect doing signal analysis with
integrals and derivatives.

In case you are wondering, these runs were on an old dirt road near where I live called Old Ford Road.
It is about 130 years old, and was built as an unemployment project, making it older than the nation
on which it stands. As such, it is likely one of the oldest intact roads in the country. These days access
is restricted to foot and bicycle traffic, and the road no longer goes any further than the bottom of
the hill due to a military base.

I have found two runs on Strava from other runners that give an example of what happens when
things go wrong. In this first example the athlete ran just over 11 miles. The watch believes he
climbed 114,000 feet during this run.

In this case, the watch was an older Fenix 3, which was released two years before the ForeRunner
935, in early 2015. Sensor technology has improved significantly in those two years, as has the
processing power available within a device like a watch.

98

In this case the likely cause of the obviously incorrect elevation is a blocked air pressure sensor on the
back of the watch. Cleaning the sensor will likely fix results like this one. It is interesting to speculate
what happened in the graph below about the 8km (5 mile) mark.

Before then, the results were high, but there was some variation. Afterwards the graph appears to go
to zero and then when it returns, does not change for the entire race. It is possible that either the
sensor got blocked further at that time, or possibly the watch knew that there was an issue, and tried
to make sense of the results. Whatever the cause, the results are obviously wrong.

Another example appears below. What is interesting in this case, apart from some ‘brick wall’
changes is the exponential curve with a long time constant. This could relate to a partial blockage, or
could suggest an algorithm attempting to fix erroneous results.

Mountain Bike Riding Too

You might be wondering what happens if someone is riding a bike rather than running. Well, there
are techniques to get the best results. When you record an activity, the first thing the watch does is
ask what sort of activity you are recording, be it a ride or a run, or even a swim.

99

If you select a ride, the watch will not be trying as hard to determine the number of footsteps that
you are making, and will also assume that you will be able to go a bi rather on wheels than running.
This is not always a case, but is a reasonable assumption.

The good thing about riding is that you are generally covering more distance, so the errors in reading
from GPS tend to be comparatively lower.

Once again, you can get accessories for the watch to improve the accuracy of the readings. One
common sensor is worn on the top of the shoe with a 9 or 10 degree of freedom sensor that helps to
determine the number of revolutions per minute you are peddling. Another sensor is similar but goes
on the pedal, and also measures how hard you are peddling. This allows the software to calculate the
amount of energy you are burning.

Whilst we are on the subject of bikes, video games are definitely invading training. Adapters are
available for bikes that let you ride in front of a television on bike, competing with other people also
in their own homes. What makes this even more interesting is that the adapter forces you to pedal
harder going uphill and allows you to coast going downhill.

This makes ‘riding’ in exotic locations like Paris, London or Washington DC easy. It did however
surprise a friend the first time when his colleague checked Strava before work and saw his workmate
riding in London before an important meeting.

APRS Whilst Running

One thing I really haven’t got into trying is using APRS whilst out running. It is something I do want to
try, but I haven’t got around to it yet. Part of this is that many of the areas I run don’t have very good
APRS coverage. I can sometimes fix that by using my car’s APRS rig as a digipeater, but in most cases,
the increase in coverage would be minor.

I have done a few runs running APRS on my iPhone, but this tended to be on road races, rather than
areas with poor mobile coverage. In areas of poor mobile coverage, phone batteries tend to die more
quickly, and I would prefer to save the battery in case I need to make an emergency phone call.

I do have plans to carry an APRS rig with me next year when I do the UTA 50km race. This will require
some planning, and I will need to consider if I need to carry spare batteries. The weight of the APRS
gear is not really a problem, as most trail races already require me to carry up to two liters of water
along with other mandatory gear. In this case, the weight of the tracker is minor compared to the
weight of everything else.

Other Technologies

Of course, these devices log using GPS, but need some type of connectivity to upload their data for
wider distribution.

100

In the sports tracking world, there are two options available for disseminating GPS data to the wider
world, similar to how APRS works. The first is the SPOT Tracker, that uses the Globalstar satellite
network. The second are the Garmin inReach devices that use the Iridium satellite network.

In both cases, the device will transmit position reports every 2 10 minutes via satellite before being
disseminated via the Internet. Both devices require subscriptions costing about 50% of the hardware
cost per year. These units tend to use satellites in LEO, or Low Earth Orbits, as a way to reduce the
costs launching the satellites.

The Actual GlowWorm Trail Marathon

I was hoping to get this article finished in the days after the site survey. Unfortunately, as you might
be able to work out, this article just kept getting longer and longer and longer. There was more
information that I wanted to put it. Then, when I was almost ready, I realized that it was only two
weeks until the actual event, so I might as well just wait for it before getting it published.

One of the things with running is that it does take a toll on the body. Doing these type of events is
even worse. One rule of thumb is that the recovery time from races is about one day per mile. Thus, a
26 mile event requires almost a month of recovery time. This is not to say that you can’t run in that
time. More that the body will not be back to peak performance until then.

For me, I am finding that my body recovers enough to be able to actually run fairly quickly,
particularly after road races. What I have found is that after marathons, my endurance takes longer
to recover. Whereas, I might normally be able to do a 10 15 mile training run at will, I find that I get
exhausted after running half that.

Doing events with lots of up and down climbing takes the toll on the legs too. This generally comes in
the form of DOMS, or Delayed Onset Muscle Soreness. You might feel fine the day after a big race,
but then it will hit you, and going up a single set of stairs will be torture. I am looking at a competing
in a race in two years’ time with about 15,000 feet of elevation. I don’t expect to be able to walk for a
week!

The reason I am mentioning this is that after a club 10 Mile16 handicap17 race two weeks before the
Glow Worm Marathon I managed to injure my quads and adductor in my leg. Treatment helped, but

101

in the end, I decided that running this marathon had the potential to cause my injury to get a lot
worse. With great reluctance, I decided to pull out.

So, rather than do a tough marathon, I decided to do an easier local trail run18 instead. Thankfully,
this run went well, and I can now resume my training for the multitude of events I have planned for
the coming months. I ran just over 15 miles with about 1200 feet of climb in a bit under three hours
in wet conditions. Given that my fitness had deteriorated in the last few weeks, this was a good
result.

Conclusion

102

Notes

ARRL and TAPR
Digital Communications
Conference

38th

September 20-22, 2019
Detroit, Michigan

ISBN: 978-1-62595-112-0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

