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Author's note 
 

The APRS network has great potential on paper: the ability to track mobile stations, send weather 

data, telemetry and messages, all with the old equipment for the packet radio at 1200 baud AFSK, 

isofrequency and almost in real time. 

Almost all users, however, have experienced difficulty using it, due to the congestion that occurs as 

soon as a fairly limited number of active stations send reports and messages. 

In recent years, several strategies have been carried out to improve the performance of the existing 

network, by optimizing the network protocol with the introduction of new rules (new paradigm), by 

inviting stations to transmit at the bare minimum, by discouraging multiple digipeating and by 

rationalizing the distribution of digipeaters through the territory; however, it's not there yet a 

quantitative analysis of the efficiency of the system architecture that could serve as a guide to identify 

the main critical issues and to formulate coherent reorganization proposals. 

It does not help the collection of statistics of the packets received and retransmitted by the digipeaters 

because collision information, essential for performance evaluation, is missing. 

Unfortunately, the theoretical study of the APRS network is difficult for a number of reasons, 

including the generation of not completely random traffic, the variety and heterogeneity of hardware 

and software used, the coexistence of different mechanisms for accessing the shared channel, partly 

CSMA and partly ALOHA, the typical capture phenomenon of FM modulation (the strongest signals 

obscure the weakest signals), the noise of the radio channel. 

Heavy simplifications are necessary to build a model that is simple enough to be treated with 

elementary means; the model proposed in the following pages does not pretend to accurately describe 

the functioning of the APRS network but wants to be a useful tool to evaluate its performance and to 

formulate reflections on possible new arrangements. 

Note to the English version 

 

I translated this book into English from Italian by myself, using Google translator and my limited 

knowledge of English (I ended studying English many years ago), so I am aware that this book needs 

a better translation and several adjustments. I hope it is understandable anyway and I apologize for 

the mistakes I definitely made. But above all, I hope readers will find the reflections I wanted to share 

with them useful and interesting. 

The author 
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Table: structure of an APRS frame 

 
Table: capacity of the APRS channel 
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Figure: Pure ALOHA - collisions 

Figure: Slotted ALOHA – collision 
 

8



53

Figure: Pure ALOHA - throughput S as a function of traffic G 

Figure: Pure ALOHA – Chance of success as a function of traffic G 
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Figure: throughput S as a function of traffic G for different values of "a" and comparison with ALOHA 

 
Table: throughput S as a function of traffic G for different values of "a" and comparison with ALOHA 
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Figure: impact of the isofrequency digipeater on throughput (solid line)  
and comparison with throughput without digipeater (dashed line) 

Figure: Chance of success P=Sk / Gk according to the normalized traffic Gk  
and comparison with the chance of success without a digipeater 
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Table: Distribution of channel use according to the traffic offered and chance of transmission 
success - network with a single isofrequency digipeater 

Figure: Distribution of the uplink and downlink slot according to aloha traffic Gk 
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Table: APRS frames successfully received according on the traffic offered 

- network with a single isofrequency digipeater 
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Table: APRS frames successfully received according to the traffic offered and chance of success – 

single digipeater network with multiple uplink channels and a separate downlink channel 
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Figure: impact of adjacent digipeaters on the uplink slot of the central digipeater: only the GL 
fraction of the traffic of the upload slot is generated by the local terminals, the rest is disturbance 

(NsL); throughput depends on overall traffic G (local traffic + noise). 
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Figure: Local (useful) throughput sL according to the overall traffic G for N=1,2,3 interfering 
digipeaters 
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Table: Local throughput as a function of total offered traffic with 1,2,3 interfering digipeaters 
 

Table: locally transmissible frames with 1,2,3 interfering digipeaters 
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Table: Chance of successful transmission in the case of a sequence of multiple repetitions 
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Figure: Chance of successful transmission in the case of a sequence of multiple repetitions 
according to the traffic G in the cells 
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Figure: terminal  stations transmit in UHF, digipeating occurs in VHF. Stations wishing to access 
the network as before, isofrequency in VHF, can continue to do so. 
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Figure: the network, completely via radio, divided into independent UHF cells and interconnected 
in VHF. Some stations, which only want to be tracked, can access the network in VHF. 
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Figure: stations 1 and 2, which transmit simultaneously, collide for the receiver IGATE below but 
not for the other two receiver IGATES. The transmitting IGATE radiates its signal in the area of the 

three cells. 
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Figure: the network, divided into cells served by bidirectional IGATES and interconnected via the 
internet. Terminal stations transmit in VHF as soon as they have a packet to send and receive the 

data stream of their IGATE. 

30



7531



76 32



77

Improved Layer 2 Protocol 
Nino Carrillo KK4HEJ 

IL2P Overview 
IL2P is a Layer 2 packet format that incorporates Forward Error Correction (FEC), packet-synchronous 
scrambling, and efficient encoding of variable-length packets for narrow-band digital data links. IL2P 
builds on the extensive work done by others in the amateur radio field to improve the quality, speed, 
and flexibility of packet radio data networks. IL2P is inspired and informed by the FX.25 draft standard, 
but departs from on-air backwards compatibility with AX.25 in order to implement a more capable 
standard. Several of the IL2P Design Goals stem directly from recommendations made by the authors 
of FX.25 in their draft specification document. 
 
Initial implementations of IL2P target compatibility with the standard AX.25 KISS interface to transfer 
data to and from a local host device. Many popular host applications (like linBPQ and APRS servers) 
expect TNCs to speak AX.25 KISS. Therefore, the first hardware implementation of IL2P in existence 
translates AX.25 KISS frames into IL2P for broadcast on-air, and converts them back to AX.25 KISS 
frames at the receive side to send them to the host. 
 
Cost of custom-made printed circuit boards and fast embedded digital signal processors are 
significantly lower today than in 2006, when the FX.25 draft standard was published. It now is possible 
to implement a KISS TNC in low-power embedded firmware that can encode and decode IL2P packets 
in real time, while listening for legacy AX.25 packets, and performing 1200 baud AFSK or 9600 baud 
GFSK modulation and demodulation on a datastream. It is the author’s hope that these hybrid firmware 
TNCs, which can offer legacy AX.25 compatibility in parallel with IL2P capabilities at lower cost than 
traditional hardware TNCs, accelerate the adoption of this improved standard. 

Design Goals 
Incorporate forward-error-correction 
Eliminate bit-stuffing  
Streamline the AX.25 header format 
Improve packet detection in absence of DCD and for open-squelch receive 
Produce a bitstream suitable for modulation on various physical layers 
Avoid bit-error-amplifying methods (differential encoding and free-running LFSRs) 
Increase efficiency and simplicity over FX.25 

Interface to Physical Layer 
IL2P can be applied to various modulation methods including Audio Frequency Shift Keying (AFSK), 
Gaussian Frequency Shift Keying (GFSK), and any others that support binary symbols. A '1' bit in IL2P 
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is sent as an AFSK "mark" tone (1200 Hz), while a '0' bit is sent as an AFSK "space" tone (2200Hz). 
When using 9600 GFSK, a '1' bit is sent as positive FM carrier deviation (appears as a positive voltage 
pulse on the TNC’s TXA line), and a '0' bit is sent as negative FM carrier deviation. Unlike Bell 202 
Non-Return-to-Zero Inverted (NRZI) AFSK and G3RUH 9600, IL2P does not use differential encoding. 

Technical Details

Reed Solomon Forward Error Correction 
Reed-Solomon (RS) forward-error-correction is used to detect and correct errors in the header and 
payload blocks. The IL2P RS encoder processes header and payload data after it has been scrambled, 
to eliminate the error-amplifying characteristics of multiplicative LFSRs. RS codes have maximum block 
lengths defined by their underlying Galois Field (GF) size. IL2P uses an 8-bit field to match the size of a 
byte. The Galois Field is defined by reducing polynomial x^8+x^4+x^3+x^2+1. The maximum RS block 
size is 255 bytes, including parity. In order to support packets larger than the RS block size, large 
packets are segmented by the encoder into nearly-equal sized blocks before RS encoding into a 
contiguous IL2P packet.  

Variable parity lengths of 2, 4, 6, 8, or 16 symbols (bytes) are used depending on the size of the 
payload block and selected FEC strength. This allows for increased efficiency for short packets, and 
provides a consistent symbol-error capability independent of packet length. Variable code shortening is 
used to eliminate block padding, enabled by a payload byte count subfield in the header.  

The RS encoder uses zero as its first root. 

IL2P does not use a Cyclic Redundancy Check (CRC) or Frame Check Sequence (FCS). Instead, 
validity of received data is verified through successful decoding of the RS blocks. 

Data Scrambling
IL2P employs packet-synchronous multiplicative scrambling to reduce transmit signal occupied 
bandwidth, ensure sufficient zero crossings for the receive data-clock PLL, and DC-balance the 
transmit bitstream. The scrambling is carried out by a linear-feedback-shift-register (LFSR), using 
feedback polynomial x^9+x^4+1, which is maximal. This polynomial is significantly lower-order than that 
used in G3RUH 9600 modems. Selection of a lower order ensures the longest runs of continuous 1 or 0
bits will be shorter, which aids receive data-clock stability.  

Packet-Synchronized LFSR
The LFSR is reset to initial conditions at the start of every packet. Scrambling begins at the first bit after 
the Sync Word. The Preamble and Sync Word are not scrambled. During receive, prior to Sync Word 
detection, the LFSR is not engaged. The LFSR state is unaltered between blocks inside a packet, 
scrambling or unscrambling continues with the state left at the end of the last block. 
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Scrambling Inside RS Code Block 
IL2P LFSR encoding is applied inside the RS code block to eliminate the bit-error-amplifying 
characteristics of LFSR processing. A free-running LFSR (such as in the receive circuitry of the G3RUH 
modem) propagates bit errors at a multiple of the number of feedback polynomial coefficients (or taps 
on the LFSR). For example, when a single bit-error passes through a free-running LFSR defined by 
X^9+X^4+1 (or any other 3-term polynomial), 3 erroneous bits will appear on the output as they are 
XOR’d through the feedback taps of the shift register. This is of little concern in legacy AX.25 on-air 
protocols, because even a single bit error anywhere in the packet will cause the packet to be rejected.  

RS codes correct errors on a symbol-by-symbol basis (byte-by-byte for IL2P). In order to prevent the 
LFSR spreading a single bit error from one RS symbol to another, the IL2P packet encoder applies RS 
encoding after the data has been scrambled, and the receiver applies RS decoding before the data is 
unscrambled. This allows bit errors to be corrected by the RS decoder before passing through the 
receive LFSR. The RS parity symbols themselves are not passed through an LFSR, they are appended 
to the RS block exactly as computed. 

Extracting All Data from LFSR Memory 
Efficient LFSR algorithms can be constructed by arranging an LFSR in Galois configuration. Galois 
configured LFSRs have bit delay, which means it takes some number of bit cycles after a bit of 
information enters the LFSR for it to appear in its scrambled form on the output. Because of this, the 
output of the LFSR is taken after its bit delay has elapsed (5 bits in this case), and flushed at the end of 
the data block to extract all information bits from its memory. The LFSR schematics given below 
represent Galois configuration of the IL2P scrambling polynomial. 

Transmit LFSR Schematic and Initial Conditions 

 

Receive LFSR Schematic and Initial Conditions 
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Packet Structure
IL2P Packet Format 

Preamble Sync Word
Control & 

Addressing 
 Header Parity

Payload 
Blocks &

Parity 

variable 3 bytes 13 bytes 2 bytes 0-1081 bytes 

All bytes are sent Most Significant Bit first. 

Preamble 
The IL2P recommended Preamble is variable length, and consists of some number of 0x55 bytes 
(01010101), which provides the receive data slicer frequent bit transitions to establish a lock on the 
transmitted data-clock before information appears. When sent back-to-back, the Preamble of 
subsequent packets is omitted. There is no terminating symbol. All IL2P packets are terminated by byte 
count, which is stored in the header. 

Sync Word
The IL2P Sync Word is 0xF15E48. This 24 bit sequence has an equal number of 1's and 0's and 
identifies the start of all IL2P Packets. Recommended Sync Word match tolerance at the receiver is 1 
bit, meaning the receiver will declare a match if 23 out of the last 24 bits received match the Sync Word 
(any single bit flipped). This intended to ensure Sync Word detection on noisy links, at the cost of 
increasing the Sync Word match space up to 25 possible matches out of 2^24 possible bit sequences. 
In a 9600 bit/sec application with open squelch and ignoring DCD, the expected average interval time 
between false matches is about 69 seconds (bit rate * 2^24 / 25). False matches are rejected by the 
receiver after the header fails RS decoding.  

FEC Level 
A one-bit subfield in the header identifies the amount of FEC parity bytes applied to the packet. A zero
value indicates variable FEC up to 8 bytes per block (referred to Baseline FEC in this document). A one
value indicates constant FEC of 16 bytes per block (referred to as Max FEC).

IL2P Header Types 
IL2P defines 2 possible header mappings, encoded in a 1-bit header subfield. A zero value indicates 
transparent encapsulation. A one value indicates translated encapsulation. Both mappings include a 
10-bit payload count, enabling packet sizes up to 1023 payload bytes after the header. This count does 
not include parity bytes attached to the payload. 
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IL2P Type 0 Header 
Type 0 headers are used for transparent encapsulation of data - the entire encapsulated packet 
appears in the payload of the IL2P packet. Therefore, the header only includes the 10 bit PAYLOAD 
BYTE COUNT subfield as described in IL2P Type 1 Header. Type 0 encapsulation occurs when a KISS 
frame is presented to the IL2P encoder that cannot be translated. Some examples of non-translatable 
KISS frames include MIC-E encoded APRS data (callsign characters can’t translate to SIXBIT), 
Extended mode AX.25 frames (modulo-127 window sizes), and unrecognized AX.25 PID codes. These 
frames are placed entirely in the IL2P payload, so they still benefit from forward-error-correction. 

IL2P Type 1 Header 
Type 1 headers contain a compressed and translated AX.25 header. The majority of common AX.25 
traffic is compatible with Type 1 translation. The Control and Addressing section of the header contains 
everything normally found in an AX.25 header, with some modifications. IL2P stores destination and 
source callsigns using six bits per character in DEC SIXBIT coding (take the ASCII code for a printable 
character and subtract 0x20). IL2P also compresses the Protocol ID field to 4 bits rather than 8.  
 

Control and Addressing Field Map for IL2P Type 1 Header 

 Byte 
0 

Byte 
1 

Byte 
2 

Byte 
3 

Byte 
4 

Byte 
5 

Byte 
6 

Byte 
7 

Byte 
8 

Byte 
9 

Byte 
10 

Byte 
11 

Byte 
12 

Bit 0 

DEST 
C/S 1 

DEST 
C/S 2 

DEST 
C/S 3 

DEST 
C/S 4 

DEST 
C/S 5 

DEST 
C/S 6 

SRC 
C/S 1 

SRC 
C/S 2 

SRC 
C/S 3 

SRC 
C/S 4 

SRC 
C/S 5 

SRC 
C/S 6 

SRC 
SSID 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

DEST 
SSID 

Bit 5 

Bit 6 UI PID CONTROL 

Bit 7 FEC 
LEVEL 

HDR 
TYPE PAYLOAD BYTE COUNT 

Subfields spanning Bit 6 and Bit 7 have MSB on the left. SSID are four-bit subfields. 
Callsigns are packed in DEC SIXBIT encoding. 

 

Type 1 Header Control and Addressing Subfields 
The Type 1 Header is composed of several fields found in the AX.25 header, though they are translated
and compressed into an IL2P format. Type 1 Headers do not support AX.25 repeater callsign 
addressing, Modulo-127 extended mode window sequence numbers, nor any callsign characters that 
cannot translate to DEC SIXBIT. If these cases are encountered during IL2P packet encoding, the 
encoder switches to Type 0 Transparent Encapsulation. 
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Payload Byte Count Subfield 
The Payload Byte Count is stored in the header as a 10-bit subfield (possible values 0-1023). The 
count represents the total number of data bytes stored in all payload blocks following the header. The 
count excludes the header, and all parity symbols appended to payload blocks. See the Payload Blocks 
section of this document for a description of how payload parity symbols are appended to payload 
blocks. 

UI Subfield 
AX.25 specifies 3 types of frames: Information, Supervisory, and Unnumbered. Each has different uses 
for the AX.25 Control field, and only some have a PID field. All AX.25 Information frames have a PID 
field. AX.25 Supervisory frames do not have a PID field. AX.25 Unnumbered frames do not have a PID 
field, unless their Control field is set to the Unnumbered Information (UI) opcode. The IL2P Type 1 
Header UI subfield is 1 bit and is set only for AX.25 Unnumbered Information frames to signal that the 
PID field exists for a U-Frame. 

PID Subfield 
In Type 1 header mapping, IL2P maps the AX.25 8-bit PID field into a 4-bit IL2P subfield. The IL2P PID 
subfield is also used to identify the AX.25 frame type, which informs the encoding and decoding of the 
IL2P Control subfield. 
 

IL2P AX.25 PID Code Mapping 

IL2P PID Translation AX.25 PID 
0x0 AX.25 Supervisory Frame (No PID byte) Omit PID 
0x1 AX.25 Unnumbered Frame (No PID byte, except UI) Omit PID 
0x2 AX.25 Layer 3 yy10yyyy or yy01yyyy 
0x3 ISO 8208 / CCIT X.25 PLP 0x01 
0x4 Compressed TCP/IP 0x06 
0x5 Uncompressed TCP/IP 0x07 
0x6 Segmentation fragment 0x08 
0x7 Future  
0x8 Future  
0x9 Future  
0xA Future  
0xB ARPA Internet Protocol 0xCC 
0xC ARPA Address Resolution 0xCD 
0xD FlexNet 0xCE 
0xE TheNET 0xCF 
0xF No L3 0xF0 

Control Subfield 
The Control Subfield contains 7 bits, and its mapping depends on the translated AX.25 frame type. 
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Translated AX.25 I-Frame Control Subfield 

All AX.25 I-Frames are considered commands. Therefore, IL2P omits the Command (C) bit for 
translated I-Frames. This subfield contains a Poll/Final (P/F) bit, receive sequence N(R), transmit 
sequence N(S). 
 

Translated AX.25 I-Frame Control Subfield Map 
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
P/F N(R) N(S) 

Translated AX.25 S -Frame Control Subfield 

AX.25 S-Frames can be one of 4 opcodes. All include a receive sequence number N(R), and a C bit. 
 

Translated AX.25 S-Frame Control Subfield Map 
 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
 N(R) C OPCODE 

RR Receive Ready N(R) C 0 0 
RNR Receive Not Ready N(R) C 0 1 
REJ Reject N(R) C 1 0 
SREJ Selective Reject N(R) C 1 1 

Translated AX.25 U-Frame Control Subfield 

AX.25 U-Frames contain an opcode, P/F bit, and C bit. Certain opcodes are always commands or 
responses, some can be either. There are no sequence numbers in U-Frames. 
 

Translated AX.25 U-Frame Control Subfield Map 
  Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

  P/F OPCODE C  

command SABME set async balanced mode extended Not supported, send as 
Transparent 

command SABM set async balanced mode P 0 0 0 1  
command DISC disconnect P 0 0 1 1  
response DM disconnect mode F 0 1 0 0  
response UA unnumbered acknowledge F 0 1 1 0  
response FRMR frame reject F 1 0 0 0  

either UI unnumbered information P/F 1 0 1 C/R  
either XID exchange identification P/F 1 1 0 C/R  
either TEST P/F 1 1 1 C/R  

Payload Blocks 
Each payload block forms a contiguous RS code block once parity is added. RS codes can correct a 
number of erroneous symbols in a code block equal to half the number of parity symbols. So a code 
block with 2 parity symbols can recover one erroneous symbol anywhere in the code block.  
Baseline FEC block lengths and parity counts in IL2P are designed to provide roughly 1.5% 
symbol-error-rate recovery in the payload blocks. The number of parity symbols added to each block 
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varies based on the size of the block. To achieve that, the following procedure is conducted by the 
transmitter to calculate the number of payload blocks and parity symbols required to compose the 
packet: 

Baseline FEC Payload Block Size Computations 
payload_block_count = Ceiling(payload_byte_count / 247) 
small_block_size = Floor(payload_byte_count / payload_block_count) 
large_block_size = small_block_size + 1 
large_block_count = payload_byte_count - (payload_block_count * small_block_size) 
small_block_count = payload_block_count - large_block_count 
 
Large blocks are 1 byte bigger than small blocks. Not every packet requires large blocks, they exist to 
carry remainder bytes. If small_block_size divides evenly into payload_byte_count, then the packet can 
be encoded without large blocks. Large blocks, if they exist, are always placed closest to the header 
when the packet is assembled. 
 
Worked examples: 
 

IL2P Baseline FEC Payload Block Count Examples 

Payload Byte Count 100 236 512 1023 

Small Block Size 100 236 170 204 

Large Block Size 101 237 171 205 

Large Block Count 0 0 2 3 

Small Block Count 1 1 1 2 

Baseline FEC Parity Symbol Count Computation 
The number of parity symbols appended to each payload block is driven by small_block_size. 
 
parity_symbols_per_block = (small_block_size / 32) + 2 
 
The encoder will append 2, 4, 6, or 8 parity symbols per payload block. The maximum small_block_size
for each parity symbol count is given below. 
 

Maximum small_block_size 
Parity Symbols per 

Block 
Maximum 

small_block_size 
2 61 

4 123 

6 185 

8 247 
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Max FEC Payload Block Size Computations 
Under the Max FEC scheme, the encoder will always append 16 parity symbols per payload block, 
regardless of block size. This provides a minimum of roughly 3% symbol-error-rate recovery in the 
payload blocks. Shorter packets benefit from higher error recovery capacity. 
 
payload_block_count = Ceiling(payload_byte_count / 239) 
small_block_size = Floor(payload_byte_count / payload_block_count) 
large_block_size = small_block_size + 1 
large_block_count = payload_byte_count - (payload_block_count * small_block_size) 
small_block_count = payload_block_count - large_block_count 
parity_symbols_per_block = 16 
 

IL2P Transmit Encoding Procedure for AX.25 KISS Data 
1. Place Sync Word in the first three bytes of output buffer 
2. Extract all AX.25 header fields 
3. Check AX.25 header fields for compatibility with Type 01 Header 

If AX.25 Fields Type 1 Compatible 
4. Compose IL2P Control & Addressing Field and place in output buffer 
5. Initialize LFSR to initial conditions 
6. Scramble the output buffer starting at the Control & Addressing Field 
7. RS Encode output buffer starting at the Control & Addressing Field 
8. Count payload bytes in AX.25 input data and perform Payload Block Size computations 
9. Perform Parity Symbol Count computation 
10. Scramble then RS encode each payload block (large blocks closest to header) 
11. Send output buffer data to transmitter (AFSK or GFSK modulator) 

If AX.25 Fields Not Type 1 Compatible Send As Type 0 
4. Count all bytes in AX.25 input data and perform Payload Block Size computations 
5. Perform Parity Symbol Count computation 
6. Place PAYLOAD BYTE COUNT subfield in Control & Addressing Field (all other fields 0) 
7. Scramble the output buffer starting at the Control & Addressing Field 
8. RS Encode output buffer starting at the Control & Addressing Field 
9. Scramble then RS encode each payload block (large blocks closest to header) 
10. Send output buffer data to transmitter (AFSK or GFSK modulator) 

 

IL2P Receive Decoding Procedure for KISS AX.25 Data 
1. Search receive bitstream for Sync Word match 

On Sync Word Match Within 1 Bit Tolerance 
2. Collect next 15 bytes as IL2P Header 
3. RS Decode IL2P Header 
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If RS Decode Successful 
4. Initialize LFSR to initial conditions 
5. Unscramble 13 byte Control & Addressing Field 
6. Extract IL2P Control & Addressing Field and translate to AX.25 header in KISS  buffer 
7. Perform Payload Block Size computations on PAYLOAD BYTE COUNT 
8. Perform Parity Symbol Count computation 
9. Collect payload blocks from receive bitstream according to results of Step 7 and 8 
10. RS decode and then unscramble each payload block 
11. Place unscrambled data in KISS buffer and send to host 
12. Return to Step 1 

If RS Decode of Header or Any Payload Block Unsuccessful 
13. Discard packet 
14. Return to Step 1 

Comparative Protocol Efficiency Analysis 
Protocol Efficiency in the graph below shows the percentage of payload bytes that make up the packet, 
excluding Preamble. The IL2P Header and Sync Word consume 18 bytes, so efficiency generally 
increases as packet size grows. The sawtooth bumps in the graph represent Payload Byte Counts 
where an additional code block is required to contain the payload.  
 
For comparison, the efficiency of AX.25 and FX.25 (255,239) protocols are included on the graph. The 
FX.25 line is computed using the smallest block size compatible with the payload size. The costs of 
bit-stuffing incurred under AX.25 and FX.25 are ignored. 
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Example Encoded Packets 
These examples are intended for use as verification samples to help individuals implementing their own 
IL2P encoders and decoders. Note that all AX.25 data samples below lack opening and closing flags, 
and are not bit-stuffed. All IL2P data samples below lack Sync Word. 

AX.25 S-Frame 
This frame sample only includes a 15 byte header, without PID field. 
Destination Callsign: KA2DEW-2 
Source Callsign: KK4HEJ-7 
N(R): 5 
P/F: 1 
C: 1 
Control Opcode: 00 (Receive Ready) 

AX.25 data: 

96 82 64 88 8a ae e4 96 96 68 90 8a 94 6f b1 

IL2P Data Prior to Scrambling and RS Encoding: 

2b a1 12 24 25 77 6b 2b 54 68 25 2a 27 

IL2P Data After Scrambling and RS Encoding: 

26 57 4d 57 f1 96 cc 85 42 e7 24 f7 2e 8a 97 

AX.25 U-Frame 
This is an AX.25 Unnumbered Information frame, such as APRS. 
Destination Callsign: CQ    -0 
Source Callsign: KK4HEJ-15 
P/F: 0 
C: 0 
Control Opcode:  3 Unnumbered Information 
PID: 0xF0 No L3 
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AX.25 Data: 

86 a2 40 40 40 40 60 96 96 68 90 8a 94 7f 03 f0 

IL2P Data Prior to Scrambling and RS Encoding: 

63 f1 40 40 40 00 6b 2b 54 28 25 2a 0f 

IL2P Data After Scrambling and RS Encoding: 

6a ea 9c c2 01 11 fc 14 1f da 6e f2 53 91 bd 

AX.25 I-Frame 
This is an AX.25 I-Frame with 9 bytes of information after the 16 byte header. 
Destination Callsign: KA2DEW-2 
Source Callsign: KK4HEJ-2 
P/F: 1 
C: 1 
N(R): 5 
N(S) 4 
AX.25 PID: 0xCF TheNET 
IL2P Payload Byte Count: 9 

AX.25 Data: 

96 82 64 88 8a ae e4 96 96 68 90 8a 94 65 b8 cf 30 31 32 33 34 35 36 37 38 

IL2P Scrambled and Encoded Data: 

26 13 6d 02 8c fe fb e8 aa 94 2d 6a 34 43 35 3c 69 9f 0c 75 5a 38 a1 7f f3 fc 
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References for Further Study 
General background on Polynomial Codes, Error Detection, and Error Correction: 
Widjaja, Indra and Leon-Garcia, Alberto. Communication Networks. New York: McGraw-Hill 2004 
166-190. Print. 
 
A good primer on Reed Solomon codes from the BBC: 
https://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf 
 
James Miller’s G3RUH 9600 Modem: 
https://www.amsat.org/amsat/articles/g3ruh/109.html 
 
Another 9600 modem implementation by John Magliacane KD2BD: 
https://www.amsat.org/amsat/articles/kd2bd/9k6modem/9k6modem.html 
 
The AX.25 2.2 specification: 
http://www.ax25.net/AX25.2.2-Jul%2098-2.pdf 
 
The FX.25 draft specification: 
http://www.stensat.org/docs/FX-25_01_06.pdf 
 
Wikipedia DEC SIXBIT encoding: 
https://en.wikipedia.org/wiki/Six-bit_character_code#DEC_six-bit_code 
 
Wikipedia Linear Feedback Shift Registers: 
https://en.wikipedia.org/wiki/Linear-feedback_shift_register 
 
KISS Protocol 
www.ax25.net/kiss.aspx 
 
This document was written by Nino Carrillo, reachable at nino.carrillo@outlook.com. 
 
Changes: 
26 Jan 2020 v0.3: Updated dead link to AX25 specification. 
1 Aug 2020 v0.4: Added Max FEC scheme (16 parity bytes per block), updated protocol efficiency 
graph. 
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Figure 1: Diagram of a mesh network. 



116

broadcast storm problem.

exact same time



117

codec2

Journal of Communications and Networks, 22

Proceedings of the 14th ACM Conference on 
Embedded Network Sensor Systems CD-ROM SenSys ’16

2010 Information Theory and Applications 
Workshop (ITA)



118

Figure 2: Overview of fine-grained frequency offset. 
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Figure 3: Coarse-grained frequency offset and timing offset. 

Figure 4: Overview of QMesh's TDMA protocol. 
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Figure 5: QMesh Software Architecture. 

Figure 6: An STM32 NUCLEO-144 board. 
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Figure 7: Closeup of the QMesh radio board. 

Figure 8: Nucleo-144 with radio shield. 
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Figure 9: Setup used to test capture success. 



125

Figure 10: Waterfall of three QMesh nodes retransmitting a signal. 

Figure 11: Several transmits enlarged. Visible are the varying transmit power levels as well as the (very faint) originating 
transmission. 
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codec2
codec2

Figure 12: Proposed architecture of QMesh Analog Repeater 
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Figure 13: Mockup of a solar-powered QMesh standalone repeater. 
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For more information about QMesh, please see the project’s Github repository at 
https://github.com/faydr/QMesh. The author can be contacted at daniel.fay@gmail.com and periodically
posts about Amateur Radio and QMesh on the Twitter account @faydrus. 
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Figure 1.  Vertical position of the tip of one propeller blade tracked
via pictures taken at 8x the rate of rotation. 

Figure 2.  If the images are taken at the same rate as the propeller 
makes a rotation, the propeller would appear stationary. 
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(real speed — capture speed)

(real speed — capture speed) 
( ). 

Figure 4 - If images are taken at a slower rate than the propeller spins,
the images display a rotation that is slower than, but in the same direction 
of, the propeller's spin. 

Figure 5.  To down-convert a received signal to a 
slower frequency, the Radio Frequency (RF) and 
Local Oscillator (LO) frequencies are mixed,
resulting in a new Intermittent Frequency (IF) 

Figure 3.  If the images are taken at a faster rate than the propeller spins, 
the images display a rotation that is slower than, but in the opposite 
direction of, the propeller's spin. 
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Figure 7.  Both the RF and Image frequencies will 
be down-converted to 10kHz. A method is needed to 
tell the difference between the positive and negative 
f i

Figure 6.  The real (desired) and image frequencies create the same 
plot on the graph when tracking the vertical position. We have no way 
to tell the difference with just the vertical position of the blade tip. 
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Figure 8.  With a rotation rate (RF) 
slower than the capture rate (LO), 
the resulting apparent frequency 
(IF=RF-LO) is negative, resulting in 
a counter-clockwise (CCW) 
rotation. This is the undesired Image 
signal 

Figure 9.  With a rotation rate (RF)
faster than the capture rate (LO), the 
resulting apparent frequency 
(IF=RF-LO) is positive, resulting in a 
clockwise (CW) rotation. This is the 
desired RF signal. 
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both

Figure 10.  As time goes on, a positive (CW) frequency will reach the upmost, 
rightmost, downmost, and leftmost positions in that order. 
A negative frequency will cycle through the rightmost, upmost, leftmost, and 
downmost positions in that order. This allows us to identify whether the 
quadrature signals represent a positive or negative frequency. 

Figure 11.  The In-Phase, Negative Quadrature, and Positive Quadrature
signals superimposed to show the phase difference between them. Both 
quadrature signals are measured relative to the constant In-Phase signal. 
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n

Figure 12 - The propeller appears stationary at 
, , and  

Figure 13 - The apparent rate of the propeller can match 
 or . This will be true for any

value of . 
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Figure 14 - Weighting function used by Design 3. Figure 15 - Weighting function used by Designs 1 and 2. Design 
4 is nearly identical, but the positive pulses are slightly taller 
than the negative ones. 
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Figure 16. Square wave visual representation of how the 
counting sequence differs between the two types of local 
oscillator configurations. 
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Figure 17 - Comparison between amplifiers used in Designs 1 and 2. 



142

Figure 18. Amplifier used in Design 4 which follows Guido’s uSDX 
design. 

Design 4: Amplifier  
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Design 1: 2nd Order LPF  
                     - no gain 
                     - 100kHz cutoff frequency 
  

Design 2: 2nd Order Butterworth LPF  
                     - 10 V/V gain 
                     - 100kHz cutoff frequency 
  

Figure 19 - Comparison of   2nd order filters used in Designs 1 and 2. 
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Table 1. Quantitative Design Comparison performance summary. 
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Figure 20.  Example Block Diagram 
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Table 2. Comparison of component package types. 
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Table 3. Different bandpass filter complexity selections and suggested application for selection each type.

type 
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Table 4. Comparison between the different types of bandpass filter topologies and their advantages and disadvantages ix. 
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Table 5. A comparison of different local oscillator configurations and important characteristics. 
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R n

Figure 22 - Tayloe Mixer Schematic with CLK 1 and CLK 2 as select line inputs to 4:1
multiplexer and sampling capacitors, C, on the 00, 11, 01, and 10 outputs of the 
multiplexer. The RF signal comes directly from the antenna to 1Y and 2Y.  xi 

Figure 21 - Etherkit Schematic of the Si5351a with level shifter.  



151

run



152

Figure 26.  Settings for the PULSE wave 0-degree voltage control 
Figure 23.  Output of the Tayloe Mixer Simulation with 
no load attached.  

Figure 23.  Bandpass Filter Simulation Results Figure24.  LTspice Bandpass Filter Simulation 
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Tdelay[s]

Figure 29.  Settings for 90-degree SINE wave voltage output. 

Figure 28.  Tayloe Mixer LTspice simulation utilizing voltage controlled switches with SINE wave control 

Figure 27.  Tayloe mixer LTspice simulation utilizing voltage controlled switches with a PULSE wave control. 
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Figure 31.  Softrock amplifier LTspice simulation topology Figure 30. Instrumentation amplifier LTspice simulation 
topology 
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Figure 32. Arduino simple test program code to experiment with the local oscillator 
and bandpass filters. The local oscillator is set for 9MHz and multiplexer select lines 
to 01.  
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Forward Error Correction and Pictures from Mars
David Garner, N6WY

N6WY@arrl.net

Abstract. 

This paper illustrates how a sender can encode binary data words so that the 
data words can be sent over a weak noisy communication channel and a 
receiver can detect the correct data words.  No abstract mathematical equations 
are used; just two numerical examples.  The rst example is a simple example. 
The second example is the encoding method used on Mariner 9 spacecraft to 
transmit pictures of the Martian surface as it orbited Mars.  The Hadamard linear 
block code is used for both examples.

Introduction. 

While doing research to reverse engineer the HF digital mode called Olivia, I 
developed two numerical examples (no strange mathematical symbols and 
abstract formulas.) that can explain to Radio Amateurs about linear Forward 
Error Correction (FEC) techniques for sending binary symbols over a radio link. 
Mathematicians and Communications Engineers may look at my examples with 
some disdain but my examples do illustrates how FEC works.

This paper covers the following:
• A short introduction of the various methods of Forward Error Correction for 

communications links.
• Background information about the Hadamard linear block code.
• A simple example of a “Covert Number Station” broadcasting random 

numbers.
• A non mathematical method for constructing a Hadamard matrix used for 

encoding and decoding Forward Error Correction Code Words.
• Background information and numerical examples for the code used on the 

Mariner 9 spacecraft.  Mariner 9 mission was to orbit Mars and transmit 
pictures back to Earth.  Forward Error Correction was used to send pictures of 
the Martian surface back to earth on a weak and noisy communication link.

• Bit Error Rate determination using Forward Error Correction.

Introduction to Forward Error Correction.

According to the BitcoinWiki, Forward Error Correction (FEC) is a technique used 
for controlling errors in data transmission over unreliable or noisy communication 



164

channels.  The central idea is that the sender encodes the message in a 
redundant way.  The redundancy allows the receiver to detect a limited number of 
errors that may occur anywhere in the message.  FEC gives the receiver the 
ability to correct errors without needing a reverse channel to request 
retransmission of data, but at the cost of a xed, higher forward channel 
bandwidth.  FEC is therefore applied in situations where retransmissions are 
costly or impossible, such as one-way communication links and when 
transmitting to multiple receivers in multicast.  The maximum number of errors 
that can be corrected is determined by the design of the FEC code, so different 
forward error correcting codes are suitable for different conditions [1].

A simplistic example of FEC is to transmit each data bit 3 times, which is known 
as a (3,1) repetition code. This allows an error in any one of the three samples to 
be corrected by "majority vote". Though simple to implement and widely used, 
this triple modular redundancy is a relatively inef cient FEC. 

The two main categories of FEC codes are block codes and convolutional codes. 

There are several linear block codes such as Hamming codes, Reed-Solomon 
codes, Hadamard codes, Expander codes, Golay codes, and Reed-Muller codes. 

In convolutional codes, the message comprises of data streams of arbitrary 
length and a sequence of output bits are generated by the sliding application of 
Boolean functions to the data stream. The convolutional codes can operate on a 
continuous string of data, whereas block codes operated on words. Convolutional 
codes also have memory—the behavior of the code depends on previous data [2].

Hadamard Code Background.

In this paper, I am limiting my discussion and examples to the Hadamard linear 
block code.  The Hadamard code is also known under the names Walsh code, 
Walsh family, and Walsh–Hadamard code in recognition of the American 
mathematician Joseph Leonard Walsh [3].  Hadamard matrices are simple matrix 
structures and are used to generate the Hadamard code.   

A Hadamard matrix is square, have entries +1 or 1 and have orthogonal row 
vectors and orthogonal column vectors.  Figure 1 shows an 8 X 8 Hadamard 
matrix.  Figure 2 is also an 8X8 Hadamard Matrix.  The point I am trying to make 
is that you do not use the mathematical format for FEC. 
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Hadamard matrices have been actively studied by mathematicians for about a 
century and half and new uses are still being discovered.  At the end of the 
referenced web page [3] is a list of practical applications for Hadamard matrices 
including an amateur radio protocol.

The Hadamard code is also used for code division multiple access (CDMA).  In 
CDMA, the Hadamard code is referred to as Walsh Code, and is used to de ne 
individual communication channels.  Each user will use a different Code Word, to 
modulate their signal. Because Walsh Code Words are mathematically 
orthogonal, a Walsh-encoded signal appears as random noise to a CDMA 
capable mobile terminal (cell phone), unless that terminal uses the same Code 
Word as the one used to encode the incoming signal [3].

Simple Example.

My simple example is not a very practical example because it corrects only one 
error.  This example is of a covert number station that needs to broadcast what 
appears to be random numbers.  This number station broadcasts only integers in 
the range of 0 to 7 using binary numbers.  For this simple example, the broadcast 
station located in Cuba uses two different drum sounds in some music that starts 
the next segment of a radio program.  A high drum sound is a one and a low 
sound is a drum zero.

Figure 2.  Hadamard 
Matrix using Black and 
White Colors

Figure 1.  8X8 Hadamard Matrix
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Each Data Word contains three bits that is one number in the range of 0 through 
7.  To send eight different Data Words using the Hadamard Code, you need 8 
different Code Words.  An 8 X 8 Hadamard Matrix has 8 rows and each row is a 
Code Word.  At this point in my simple example, I am not going to show how to 
make a Hadamard Matrix.  Later, I will show a non mathematical way of creating 
a Hadamard Matrix of the size required for the 
Mariner 9 mission.

Since computers use 1’s and 0’s, I am going to 
change the -1’s to 0’s for the simple example 
Hadamard matrix as shown in Table 1.  To the right 
of the matrix are the Data Words and to the left are 
the Data Values.  Instead of sending 011 for the 
number 3, after Hadamard encoding the number 3 
becomes 10011001.

As a side note, I did not need to assign the top row 0 and the bottom row 7.  Any 
assignment would work as long as the receive stations know the assignment.

Using the Table 1 Encode Code Table, the covert number station is going to 
broadcast the Data Value 3, for four consecutive times.  The Data Word that is 

Table 1.  Encode Table

Data
Value

Hadamard 
matrix

Data
Word

0 11111111 000

1 10101010 001

2 11001100 010

3 10011001 011

4 11110000 100

5 10100101 101

6 11000011 110

7 10010110 111

Table 2.  Decode Table

Data
Value

Hadamard 
Matrix

RCW0
score

RCW1
score

RCW02
score

RCW3
score

0 11111111 4 3 2 3

1 10101010 4 5 4 3

2 11001100 4 5 4 5

3 10011001 8 7 6 5

4 11110000 4 3 4 3

5 10100101 4 5 6 7

6 11000011 4 5 6 5

7 10010110 4 3 4 5
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being encoded four times is 011 and the Transmitted Code Word that is being 
sent four time is 10011001.  

The receive site has some interference and the agent in the eld receives the 
four Code Words with some errors in the Code Words.  With the help of Table 2, 
the eld agent can decode the message.  (Figure 3 de nes the column headings 
used in Table 2.)  The eld agent needs four digits to identify the mission that are 
listed in the eld agent mission book — the mission number book is not shown in 
this paper because it is Top Secret.  The mission for this broadcast is number 
3333.

The receive decode 
Hadamard matrix has the 
same values as the 
transmit encode 
Hadamard matrix.  A 
simple scoring method 
identi es the Transmitted 
Code Word.  The 
Received Code Word is 
given one point for each 
time it has the same bit 
value in the same position 
as a row in the Hadamard 
Matrix.  The row with the 
highest score identi es 
the data value.  

The rst Received Code Word (RCW0) has zero bit errors and has a perfect 
score for the Code Word that corresponds to the Data Value of 3.  When a 
Received Code Word has a perfect match in the decode table all the other 
Received Code Words have a score that is equal to the distant value that a row 
in the Hadamard matrix has to all the other rows in the Hadamard matrix.  The 
distant value is simply the number of bits that one row has that are different than 
any other row in the Hadamard Matrix. In standard coding theory notation for 
block codes, my simple example Hadamard code is a [8,3,4] where the 8 is block 
length ( the number of bits in a Hadamard row), the 3 is the message length (the 
number of bits in the Data Word) and the 4 is the distance.  The Mariner 9 code 
that is discussed later has a large block length compared to the message length 
that allows many bit errors in the Received Code Word.

Figure 3.  Column Headings De nitions for 
Table 2

Send Data Value = 3 and Data Word = 011
Transmitted Data Code Word = 10011001
RCWx = Received Code Word with x errors
RCW0 = 10011001   (0 error.)
RCW1 = 10001001   (1 error. red indicates 
received bit error)
RCW2 = 10000001   (2 errors. red indicates 
received bit error)
RCW3 = 10000101   (3 errors. red indicates 
received bit error)
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The second Received Code Word (RCW1) has one bit error.  My simple example 
using a Hadamard code [8,3,4] can only correct one bit error.  The highest score 
in the decode table is for the Received Code Word for the Data Value of 3.  
Based on the score in the decode table, the eld agent knows that the Code 
Word has one error and the Data Value is 3.

The third Received Code Word (RCW2) has two bit errors.  Based on the score 
for RCW2 in the decode table, the eld agent knows that RCW2 has two bit 
errors but does not know the Data Value.  The eld agent, who is in Oregon, 
checks the mission book and see that all missions that have the rst three 
numbers of 335 and 336 are in Chicago.  Using deduction, the eld agent knows 
that the rst three numbers in his mission are 333.

The fourth Received Code Word (RCW3) has three bit errors.  The eld agent 
does not know the RCW3 has three bit errors and using the scoring in the 
decode table the agent concludes the RCW3 has one bit error and he prepares 
to complete mission number 3335 instead of mission number 3333.  FEC does 
have limitations.

How to construct a Hadamard Matrix.

A Hadamard matrix H of order n is an n x n matrix. My simple example used a 
Hadamard matrix of order 8 and is an 8 X 8 matrix.  A Hadamard matrix can exist 
only if n is a multiple of 4.  A 2 X 2 Hadamard matrix does exist and is a start 
point for building larger Hadamard matrices.

Figure 4 shows Hadamard matrices of order 2, 4, 8, and 16.  The subscript on 
the H indicates the order of the Hadamard matrix.  In the larger matrices, 
construction lines divide a matrix in 4 quadrants.  

A Hadamard order 4 matrix can be made from the Hadamard order 2 matrix.  To 
construct the Hadamard matrix of order 4, make a new Hadamard matrix of order 
2 by changing the sign of every entry in the Hadamard order 2 matrix. Place that 
new Hadamard order 2 matrix in the lower right quadrant of the order 4 matrix.  
Copy the original order 2 matrix in the other 3 quadrants of the order 4 matrix.  
Similarly, a Hadamard order 8 matrix can be made from the Hadamard order 4 
matrix and a Hadamard order 16 matrix can be made from the Hadamard order 8 
matrix.  A large Hadamard matrix can be made using this technique.  There are 
easier ways to make Hadamard matrices using mathematics.
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Figure 2 is from reference [4]

Figure 4.  Hadamard Matrices Construction
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Mariner 9 Background.

In 1971, the Mars Mariner 9 Spacecraft was the rst man-made object to orbit a 
different planet and send back pictures of Mars that was 84 million miles from 
earth using a 20-watt transmitter.  The pictures were black and white.  Each 
Martian photograph required 4.5 million bits.  The 4.5 million bits were split into 6 
bit Data Words.  Using 6 bits per Data Word, 64 different Data Words were 
created [5],[8].

Because of the weak signal from Mariner 9, the maximum useful data length of a 
Data Word with forward error correction was about 30 bits.  The 5-repeat code 
was a possibility, having the advantage that it is very easy to implement, but it is 
only a capability of correcting 2 errors in an encoded word.  To send a 6 bit Data 
Word with 5-repeat code becomes a 30 bits per Transmitted Code Word. (For 
sending a six bit Data Word like 010101, the data stream with 5-repeat code 
becomes 000001111100000111110000011111.)  The Hadamard code was chosen 
for Mariner 9 because encoding a 6 bit Data Word into a 32 bit Transmitted Code 
Word gives a capability of correcting 7 errors at the received location [6].

A Hadamard order 5 matrix has 32 Code Words and has 32 bits per Code Word.  
The 32 bits per Code Word meets the Mariner 9 requirement but a total of 64 
Code Words are required.  A Hadamard order 6 matrix has 64 Code Words but 
the Mariner 9 communication link cannot support sending 64 bit Code Words.  
The solution is to use an augmented Hadamard code.

An augmented Hadamard code for Mariner 9 uses two different Hadamard order 
5 matrices stacked together such that it becomes one matrix with 64 rows and 32 
columns.  The second matrix has 0’s where the rst matrix has 1’s and the 
second matrix has 1’s where the rst matrix has 0’s.  All the rows in the 
augmented Hadamard code matrix of order n are different and will have the 
same distant value as the standard Hadamard code matrix of order n.  In 
standard coding theory notation for block codes, the Mariner 9 augmented 
Hadamard code is [32,6,16] and the standard Hadamard code matrix of order 5 
is [32,5,16].  Table 3 contains the augmented Hadamard code matrix that I am 
going to show FEC capability for Mariner 9.  Table 3 also has the scores for 
Received Code Words.  The Mariner 9 Code Words discussion is later in this 
paper. 
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Now before I proceed to show the decode capability of the [32,6,16], I need to 
comment about the design of Mariner 9.  Processors and memory was not that 
great during the 1960s.  The central processor for Mariner had a memory of 512 
words [5].  Mariner 9 could not store 64, 32-bit Code Words.  Mariner 9 did use a 
hardware design that was more economical in terms of speed, space, and 
weight. The hardware designed calculated a Transmitted Code Word from a Data 
Word rather than read it out of a stored array [7].  Amateur Radio HF modes that 
use Hadamard Code Words are not read out of a stored array but use a software 
program that calculates a Transmitted Code Word from each Data Word.

The earth receiving station for Mariner 9 required a fast decoding algorithm.  The 
decision to use the FEC Hadamard code was based primarily on the decoding 
algorithm.  A NASA engineer with the last name of Green designed what was 
called “The Green Machine”.  “The Green Machine” used a Fast Fourier 
Transform to calculate the Data Words from the Received Code Words [7].

Using Table Look-Up for Mariner 9 Code Words.

The earlier simple example had a small Code Word look-up table because the 
simple example had only 8 Data Words.  The Mariner 9 has 64 Data Words and 
uses an augmented Hadamard code that requires two 32 X 32 Hadamard 
matrices.  I copied the Mariner 9 Data Word to Code Word assignment from 
reference [8].  I added the score columns for two different Received Code Words 
for the table shown in Table 3.  I had to use two pages for Table 3.  Table 3a 
contains the Received Code Word assignments for the Data Words with value of 
1 for the most signi cant bit.  Table 3b contains the Received Code Word 
assignments for the Data Words with value of 0 for the most signi cant bit.  

Figure 5 has the Column Headings De nitions for Table 3.  Red bit values in the 
Received Code Words are bit errors.  The values in the table that are blue 
indicates the Data Word with the most signi cant bit value of 1 and green 
indicates the Data Word with the most signi cant bit value of 0.

The Table 3 shows that the highest score indicates the correct Data Word for a 
Received Code Word that has less than 8 bit errors.  If a Received Code Word 
has 8 or more bit errors, the correct Data Word cannot be determined.  Every 
entry in a column does not need to be completed for determining the correct 
Received Code Word.  A score of greater than 24 determines the correct 
Received Code Word.  For example, if a cell in table 3 has a score of 25 then no 
cell in that column will have a score greater than or equal to 25.
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Figure 5.  Column Headings De nitions for Table 3

Send Data Words alternates between 100011 and 000011

Transmitted Code Words alternates between:
10101010010101011010101001010101 
00000000111111110000000011111111 

First Received Code Word is 1E0 and last is 0E8

1
E0 = 0 errors for Received Code Word that has 1 as most signi cant bit

0
E0 = 0 errors for Received Code Word that has 0 as most signi cant bit

The number above E indicates the value for the most signi cant bit and 
the number following E indicates the number of errors in the Received 
Code Word.

Received Code Words.  Red bit values are bit errors.
1E0 = 10101010010101011010101001010101
0E0 = 00000000111111110000000011111111
1E1 = 10101010010101011010101001010100
0E2 = 00000000111111110000000011111100
1E3 = 10101010010101011010101001010010
0E4 = 00000000111111110000000011110000
1E5 = 10101010010101011010101001001010
0E6 = 00000000111111110000000011000000
1E7 = 10101010010101011010101000101010
0E8 = 00000000111111110000000000000000

Note:  The position of any bit error does not affect the score
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Table 99a.  Score for Received Code Words

Data
Word

Code Word 1
E0

0
E0

1
E1

0
E2

1
E3

0
E4

1
E5

0
E6

1
E7

0
E8

111111 11111111111111111111111111111111 16 16 15 14 15 12 15 10 15 8

100000 10101010101010101010101010101010 16 16 17 16 19 16 21 16 23 16

110000 11001100110011001100110011001100 16 16 17 18 15 16 17 18 15 16

101111 10011001100110011001100110011001 16 16 15 16 15 16 15 16 15 16

111000 11110000111100001111000011110000 16 16 17 18 17 20 15 18 15 16

100111 10100101101001011010010110100101 16 16 15 16 13 16 13 16 15 16

110111 11000011110000111100001111000011 16 16 15 14 17 16 17 18 15 16

101000 10010110100101101001011010010110 16 16 17 16 17 16 15 16 15 16

111100 11111111000000001111111100000000 16 0 17 2 17 4 17 6 17 8

100011 10101010010101011010101001010101 32 16 31 16 29 16 27 16 25 16

110011 11001100001100111100110000110011 16 16 15 14 17 16 15 14 17 16

101100 10011001011001101001100101100110 16 16 17 16 17 16 17 16 17 16

111011 11110000000011111111000000001111 16 16 15 14 15 12 17 14 17 16

100100 10100101010110101010010101011010 16 16 17 16 19 16 19 16 17 16

110100 11000011001111001100001100111100 16 16 17 18 15 16 15 14 17 16

101011 10010110011010011001011001101001 16 16 15 16 15 16 17 16 17 16

111110 11111111111111110000000000000000 16 16 17 18 17 20 17 22 17 24

100001 10101010101010100101010101010101 16 16 15 16 13 16 11 16 9 16

110001 11001100110011000011001100110011 16 16 15 14 17 16 15 14 17 16

101110 10011001100110010110011001100110 16 16 17 16 17 16 17 16 17 16

111001 11110000111100000000111100001111 16 16 15 14 15 12 17 14 17 16

100110 10100101101001010101101001011010 16 16 17 16 19 16 19 16 17 16

110110 11000011110000110011110000111100 16 16 17 18 15 16 15 14 17 16

101001 10010110100101100110100101101001 16 16 15 16 15 16 17 16 17 16

111101 11111111000000000000000011111111 16 16 15 14 15 12 15 10 15 8

100010 10101010010101010101010110101010 16 16 17 16 19 16 21 16 23 16

110010 11001100001100110011001111001100 16 16 17 18 15 16 17 18 15 16

101101 10011001011001100110011010011001 16 16 15 16 15 16 15 16 15 16

111010 11110000000011110000111111110000 16 16 17 18 17 20 15 18 15 16

100101 10100101010110100101101010100101 16 16 15 16 13 16 13 16 15 16

110101 11000011001111000011110011000011 16 16 15 14 17 16 17 18 15 16

101010 10010110011010010110100110010110 16 16 17 16 17 16 15 16 15 16



174

Table 99b.  Score for Received Code Words

Data
Word

Code Word 1
E0

0
E0

1
E1

0
E2

1
E3

0
E4

1
E5

0
E6

1
E7

0
E8

010101 01101001100101101001011001101001 16 16 15 16 15 16 17 16 17 16

001010 00111100110000111100001100111100 16 16 17 18 15 16 15 14 17 16

011010 01011010101001011010010101011010 16 16 17 16 19 16 19 16 17 16

000101 00001111111100001111000000001111 16 16 15 14 15 12 17 14 17 16

010010 01100110100110011001100101100110 16 16 17 16 17 16 17 16 17 16

001101 00110011110011001100110000110011 16 16 15 14 17 16 15 14 17 16

011101 01010101101010101010101001010101 16 16 15 16 13 16 11 16 9 16

000010 00000000111111111111111100000000 16 16 17 18 17 20 17 22 17 24

010110 01101001011010011001011010010110 16 16 17 16 17 16 15 16 15 16

001001 00111100001111001100001111000011 16 16 15 14 17 16 17 18 15 16

011001 01011010010110101010010110100101 16 16 15 16 13 16 13 16 15 16

000110 00001111000011111111000011110000 16 16 17 18 17 20 15 18 15 16

010001 01100110011001101001100110011001 16 16 15 16 15 16 15 16 15 16

001110 00110011001100111100110011001100 16 16 17 18 15 16 17 18 15 16

011110 01010101010101011010101010101010 16 16 17 16 19 16 21 16 23 16

000001 00000000000000001111111111111111 16 16 15 14 15 12 15 10 15 8

010100 01101001100101100110100110010110 16 16 17 16 17 16 15 16 15 16

001011 00111100110000110011110011000011 16 16 15 14 17 16 17 18 15 16

011011 01011010101001010101101010100101 16 16 15 16 13 16 13 16 15 16

000100 00001111111100000000111111110000 16 16 17 18 17 20 15 18 15 16

010011 01100110100110010110011010011001 16 16 15 16 15 16 15 16 15 16

001100 00110011110011000011001111001100 16 16 17 18 15 16 17 18 15 16

011110 01010101101010100101010110101010 0 16 1 16 3 16 5 16 7 16

000011 00000000111111110000000011111111 16 32 15 30 15 28 15 26 15 24

010111 01101001011010010110100101101001 16 16 15 16 15 16 17 16 17 16

001000 00111100001111000011110000111100 16 16 17 18 15 16 15 14 17 16

011000 01011010010110100101101001011010 16 16 17 16 19 16 19 16 17 16

000111 00001111000011110000111100001111 16 16 15 14 15 12 17 14 17 16

010000 01100110011001100110011001100110 16 16 17 16 17 16 17 16 17 16

001111 00110011001100110011001100110011 16 16 15 14 17 16 15 14 17 16

011111 01010101010101010101010101010101 16 16 15 16 13 16 11 16 9 16

000000 00000000000000000000000000000000 16 16 17 18 17 20 17 22 17 24



175

Bit Error Rate (BER).

The average Bit Error Rate (BER) can be calculated for FEC linear block codes 
by using the average number of bit correction required for each Received Code 
Word.  For the table look-up method, the number of errors for the Received Code 
Word is the difference between the perfect score and the actual score.  For the 
words in Table 3 that have the high score, there are 10, 32 bit Received Code 
Words and the average BER is:

Average BER = (0+0+1+2+3+4+5+6+7+8)/(10*32) = 36/320 = .11 = 11%

I used the word with 8 errors because the Mariner 9 FEC can detect 8 bit errors 
but it can correct only 7 bit errors.

Summary. 

The table look-up method is generally not used for Hadamard FEC encoding 
and decoding Data Words.  Encoding and decoding can be quickly done using 
math and a small computer program.  The Mariner 9 augmented Hadamard 
code is [32,6,16], where the 32 is block length ( the number of bits in a 
Hadamard row), the 6 is the message length (the number of bits in the Data 
Word) and the 16 is the distance.  For FEC linear block codes, the maximum 
number of errors that can be corrected is determined by half the distance minus 
1.  The maximum number of errors that can be detected is half the distance.
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Abstract – The wsprnet.org database provides a very 
good service for collecting, and making available, some 
2.4 million spots from about 2500 reporters on a typical 
day. Its web page query tool, and those of third parties 
that scrape data from wsprnet.org, fulfill the needs of 
very many users. However, for users seeking to glean 
additional information from their own WSPR spots, or 
from those of a wider community, the tools provided by 
a relational database and a data visualization package 
become necessary. This paper outlines the rationale 
behind the WsprDaemon time series database, our initial 
experience with Influx as the database, and the reasons 
for moving to TimescaleDB. The system's architecture is 
described, highlighting resilient data gathering with user 
and server caches, an ability to handle delayed spot 
reporting, and a close coupling to Grafana as the 
visualization package. Three examples of Grafana 
Dashboards illustrate this approach and the utility of the 
results in providing users with a richer set of graphics to 
help them understand what WSPR spots tell them about 
propagation and their own installations and noise 
environment. 
 

1. INTRODUCTION 
Since the introduction of the Weak Signal Propagation 
Reporter (WSPR) protocol in 2008 reception reports 
have been uploaded to wsprnet.org. Originally written 
by Bruce Walker, W1BW, and now maintained by a 
small team of volunteers, wsprnet.org provides a simple, 
web-based interface of pull-down options to query its 
SQL database. There is also the 'old database' interface 
at wsprnet.org/olddb that supports web-page queries 
and 'scraping' using curl, a command line tool for data 
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transfer to or from web pages (curl.haxx.se). In 
addition, there is an invitation-only Application 
Programming Interface (API) by the wsprnet 
administrator Gary McMeekin, W1GJM that returns 
JavaScript Object Notation (JSON) data [1].  

Writing in August 2010 Taylor and Walker reported 
that the WSPR database comprised 32 million spots, 
with 300-500 stations reporting 50,000 to 100,000 spots 
daily [2]. It is a tribute to the early work, the on-going 
support and investments in hardware that wsprnet.org 
provides an effective central reporting database for some 
2500 reporting stations handling 2.4 million spots a day. 
Harder to quantify is the load on the database from its 
web-page users and from several third-party scraper and 
API applications. 

Third-party applications come in several forms. There 
are near-real time [3], daily [4] and monthly [5] ranked 
lists, a map with simple pull-down options [6], suites of 
tables, charts and maps as a website [7], an app for 
mobile devices [8], to a comprehensive graphing tool 
drawing on its own copy of the full wsprnet.org database 
[9]. 

Given wsprnet.org itself and the plethora of third-
party applications, why did we see the need for a 
separate database and graphing tool? There were several 
drivers, in part cascading as the initial project proved 
useful: 
1.  Author Robinett's concept of a robust and reliable 

reporting tool for WSPR spots from the multi-
channel KiwiSDR (www.kiwisdr.com) led to 
him writing a Linux application, WsprDaemon 
(wsprdaemon.org and [10]), now with over 40 
users. 

2.  Recognizing that the KiwiSDR was capable of 
estimating noise level at its input author Griffiths 
contributed an investigation of noise estimation at 
the same time and on the same frequencies as 
receiving WSPR spots [11]. As that data could not 
be reported to wsprnet.org a separate database was 
needed. Tommy Nourse, KI6NKO, suggested using 
Influx, a database specifically designed for time 
series data, with Grafana as the graphical display.  

3.  Following encouragement from several members of 
the HamSci community (hamsci.org) we added 
spots from WsprDaemon users to an Influx 
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(www.influxdata.com) database, and as its 
usefulness became apparent we added spots for all 
reporters, obtained from wsprnet.org. 

4. Over time, an ambition grew to be able to offload 
some of the third party data scraping from 
wsprnet.org by providing a secondary source of 
reported spots. 

The remainder of this paper is organized as follows: 
section 2 introduces time series databases, summarizes 
our experience of Influx, and the reasons for our move to 
TimescaleDB (www.timescale.com); section 3 
describes our TimescaleDB implementation, its 
capability and current user interfaces; section 4 describes 
how Grafana links to TimebaseDB and the features 
available; section 5 provides examples of insights into 
propagation and station performance that can be 
obtained from different graphical representations of the 
basic and derived data, section 6 shares some thoughts 
for future development of WsprDaemon, the database 
and graphical visualization. 

2. TIME SERIES DATABASES: INFLUX AND 
TIMESCALEDB 

Time series databases have emerged as a class of tools 
that deliver performance improvements over traditional 
databases by recognizing several characteristics of many 
time series. These include many insert operations, often 
in batches, and often timely, that is, few inserts are 
delayed, updates to existing inserts are rare, and queries 
often specify a time interval [11]. Time series databases 
'chunk' the data in time, keeping the most recent data in 
memory. This facilitates fast response times for simple 
queries on recent data but requires paging between 
memory and disk for data in older chunks, slowing the 
response. In addition to Influx and TimescaleDB others 
include Clickhouse, OpenTSDB, Riak TS, and Gorilla. 
As database novices we were steered toward Influx. 

2.1 Influx time series database 
Influx is a purpose-built time series database with its own 
query language, similar to SQL. Using its excellent 
documentation [12] our database was set up in hours. 
The downside was that it took us time and accumulated 
experience to become aware of the limitations of Influx's 
approach for the characteristics of the WSPR dataset. 

Briefly, Influx creates a 'measurement' (similar to an 
SQL table) with indexed tags (character fields such as 
Callsigns and Locators, but also Band, as only tags can 
be queried) and non-indexed fields (numeric fields such 
as SNR or Drift). Data are not stored as simple rows as 
they would appear in a spreadsheet or in many databases 
but are associated with the tag sets.  

Cardinality is a term for the number of unique 

combinations of measurements, tags and fields in a 
database. As cardinality grows, Influx's response time to 
queries increases, as does its CPU and memory 
requirements. It helps that most callsigns are always 
associated with the same locator. But even so, after four 
days, with 5.8 million spots, the cardinality had reached 
over 256,000. Influx's documentation considered this 
'moderate' suggesting hardware with 4-6 cores and 8–
32GB memory. As we were running on a Digital Ocean 
Droplet with 2 cores and 4GB memory the performance 
had become unacceptable; the time taken to return the 
results of a single-user simple query to list 10,000 spots 
increased from a barely acceptable 15s to 28s.  

While we were prepared to move to higher-
performance hardware, the continued, albeit reducing, 
rise in cardinality, with no sign of reaching a stable 
value, Figure 1, led us to look for an alternative database. 
Potential users of Influx should carefully consider the 
likely cardinality and associated hardware requirements 
for their own particular requirements.  

 

2.2 Why a TimescaleDB time series database 
Further reading, our experience with Influx giving us a 
better insight into what was needed, and a readable, fair-
minded comparison of Influx and TimescaleDB [12] led 
us to TimescaleDB. TimescaleDB is an extension to the 
very well established open-source relational database 
postgreSQL (www.postgresql.org) that optimizes its 
performance with time series. It B-tree approach to 

Figure 1. An almost linear rise in the number of spots in our 
Influx database gave rise to a cardinality that was still rising 
after 7 days. The cardinality : spots slope of 0.036 after 1 
day had reduced to 0.018 after 7 days, but its continued rise 
would give unacceptable query times on the available 
hardware. 
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indexing data promised a better ability to handle the 
high cardinality inherent in WSPR data. 

Importantly, as a relational database, TimescaleDB 
enables join operations both within individual tables 
(self-join) and between tables. This feature was not 
available in v1.7 Influx that we were using. Join 
operations allow queries such as: calculate the difference 
in SNR for the same sender at the same time in the same 
band for two different reporters.  

3.  IMPLEMENTING A TIMESCALEDB DATABASE 

3.1 Data architecture overview 
The data architecture of our August 2020 
implementation is shown in Figure 2. In brief: 

1. WsprDaemon client software on the reporting 
station's computer caches spot data, to avoid 
gaps during outages. Records comprising the 
normal WSPR fields are forwarded using HTTP 
Put to wsprnet.org and an extended set by FTP 
to logs.wsprdaemon.org, including estimates of 
local noise if enabled.  

2. WsprDaemon server logs.wsprdaemon.org has 
two spots input paths: direct from WsprDaemon 

users, and from all users from wsprnet.org via its 
API every two minutes. Preprocessing adds fields 
including numeric latitude, longitude and 
azimuth at the receiver as useful variables to plot 
when visualizing data [Section 5].  

3. Spots from WsprDaemon users with additional 
fields are inserted into table wsprdaemon_spots 
and their noise data goes into table 
wsprdaemon_noise in the TimescaleDB 
database. Spots arriving via the wsprnet.org API 
go to table spots. Users connect to this database 
to query data. At current loads the server is well 
able to handle data insertion and user queries. 

4. Data is also obtained from third parties via a 
scraper or an API. Currently we obtain the 
three-hourly geomagnetic disturbance index Kp 
from the US Space Weather Prediction Center. 

5. As this data arrives at the server it is cached 
before being mirrored to a backup server 
logs1.wsprdaemon.org and inserted into a 
replica TimebaseDB database.  

3.2 Hardware outline 
High availability, sufficient memory to hold at least one 

Figure 2. Diagram showing the data architecture of WsprDaemon, its data input pathways, its resilient design in having a server 
with a TimesacleDB database mirror data to a separate backup. 
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month of data in memory, appropriate processing power 
and good Internet connection are key requirements for 
the server logs.wsprdaemon.org. Currently these 
requirements are met with an owned Dell 8-core 192GB 
memory, 550GB SSD and 5TB disk machine. To ensure 
resilience against power outages and to provide a Gb 
Internet connection the server is collocated at a 
Hurricane Electric data center. A backup machine 
provides a hot-standby facility. 

3.3 TimescaledDB installation and database set-up 
Open Source, Community and paid-for Enterprise 
versions of TimebaseDB are available for a range of 
operating systems, including Windows, MacOS and 
several Linux distributions [14]. Installation was 
straightforward, edits to the configuration file were 
necessary to allow, among others, remote connections, 
access by password, and to set time zone to UTC. Port 
5432 needs to be open on the router/firewall(s).  

Initial set-up of a database is well described in the 
TimescaleDB documentation, although new SQL users 
will find the tutorial and examples pages at 
www.postgresqltutorial.com very helpful. The 
TimescaleDB extension need only be loaded once. An 
interactive program, psql, enables effective 
communication with the database for administrative 
tasks and to download the results of queries as csv files. 

For our initial database we migrated WSPR data from 
Influx using a purpose-coded tool, Outflux [15]. If one is 
migrating to TimescaleDB from another postgreSQL 
database use the psql command pg_dump. 

On creation, database tables will simply be 

postgreSQL tables. The create_hypertable TimescaleDB 
extension converts a postgreSQL table to a hypertable - 
these are interlinked 'chunk' tables, where a chunk covers 
a user-set time period. The choice of duration for a 
chunk needs to consider the incoming average data rate 
(say in MB/day), the size of the associated index, and the 
free memory available across all of the active hypertables 
and databases on the machine. It is advisable that all 
active chunks fit into 25% of memory.  

Early experience showed the spots table from 
wsprnet.org, with derived variables, grew between 370 
and 460MB/day from data, and 58 to 72MB/day from 
the index. For logs.wsprdaemon.org with 192GB 
memory we have set a conservative chunk size of 30 days 
rather than the 83 days implied by the 25% guide. This 
is to allow us to ensure that there is adequate CPU 
performance for queries spanning 30 days as our user 
base grows. 

3.4 Query response times 
There may be little value in providing examples of query 
response times without a full, detailed analysis of the load 
on the server. Nevertheless, given the minimal 
information in Figure 3, queries via third party app 
wsprd.vk7jj.com on all bands from OE9GHV for up 
to 50,000 spots over 24 hours returned 33,908 spot lines 
in 2.3 seconds, and for up to 500,000 spots over 7 days 
returned 275,784 spot lines in 13.6 seconds. The average 
time for 33 queries for all spots over the last hour for a 
variety of stations was 1.4 seconds. [Note: when preparing 
this figure logs.wsprdaemon.org was labeled WD1]. 

Figure 3. Screen shot of a pg_admin window showing statistics for the logs.wsprdaemon.org server. There are 1 to 8 active sessions; the 
Tuples in graph shows the Inserts from wsprnet.org; the Tuples out graph shows traffic from user queries. The two peaks at left were for 
queries via third party app wsprd.vk7jj.com for up to 50,000 spots over 24 hours received by OE9GHV on all bands, the queries returned 
33,908 spot lines in 2.3 seconds, the right hand peak, with over 15 million Tuples out was for a query for all spots (275,784) from 
OE9GHV for 7 days. 
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4. GRAFANA VISUALISATION WITH TIMESCALEDB 
Grafana (grafana.com) is a multi-platform open source 
data visualization package with extensive support for 
connections to numerous databases including 
postgreSQL and TimescaleDB. In its terminology the 
user creates a 'Dashboard' comprising one or more 
'panels', a panel may be a time series graph, a simple 
gauge, a digital readout, a map, or a host of other data 
representations. In this paper we focus on using Grafana 
time series graphs with WSPR data from our 
TimescaleDB database. 

We have set up a few read-only example Dashboards 
at logs.wsprdaemon.org:3000 with access inform-
ation available at wsprdaemon.org/grafana.html. 
However, users may want to install Grafana on their 
own machine to create custom Dashboards. Using Share 
–> Export options the json code for our Dashboards can 
be saved and imported into a user's local Grafana 
instance as starting templates for their own versions. 

4.1 Setting up Dashboards and panels 
In summary, the steps to creating a data visualization 

site after installing Grafana are: 
•  Add a data source: there are currently pull-down 

options for over 20 sources, including database 
types, cloud repositories, and enterprise plug-ins. A 
single Dashboard may draw on data from one or 
more of these sources. Adding a data source 

requires connection details: host IP address, userid, 
password, SSL mode, any connection time limits 
etc.  

•  Build a Dashboard: Starting with a new blank panel 
we add one or more queries if, as with 
TimescaleDB, the source is a database. After 
selecting the data source from its known list 
Grafana provides a comprehensive skeleton SQL 
Query Builder that the user modifies by deleting 
unwanted parts, using pull-down options to add 
specifics, e.g. to select SNR or distance as variables 
to plot, whether to use aggregate functions, e.g. to 
count the number of spots received in a time 
interval, or to form an average. For simple queries 
the Query Builder is sufficient; more complex 
queries can be written directly in SQL. 

•  Choose and customize visualization: Simple graphs 
of time series are excellent for many variables, but 
other Grafana options are very useful. Heat maps 
show the value of a derived quantity, e.g. a count of 
instances, as a color (effectively a z-axis) within a 
time period (a time bucket) and over a range of the 
y-axis variable (bins). Examples of heat maps 
include the number of spots in 20-minute time 
buckets and 1000km range bins, or in 15  bins of 
azimuth at the receiver. 

5.  INSIGHTS INTO PROPAGATION AND STATION 

Figure 4. Grafana Dashboard that enables a user to compare distance statistics in 10 minute intervals (lower quartile, median, upper 
quartile) for two receivers and two bands. As in this example, a comparison may be between two different receivers on the same band, 
but can also be used for the same receiver on two different bands. Pull down options at top right set the time span and the user can save 
or export the plot, or save the data in csv or json formats. 
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PERFORMANCE 
In this section we show three graphical examples to 
illustrate the value of bringing together a time series 
database and Grafana visualization. A common feature 
of most of these Grafana Dashboards is that by using 
template variables the user can easily select, using pull-
down options, the stations, bands etc. to plot.  

5.1 Insights into propagation - simple time series plots 
Figure 4 shows a Dashboard that enables us to look at 
simple statistics with time of the distances between 
receiver and transmitters for two receivers and for two 
bands. The statistics here are the lower and upper 
quartiles and the median. The two receivers may be the 
same, but the bands may differ, or, as in this example, 
we can compare two different receiver stations on the 
same band. 

In this example on 40m, AI6VN/KH6 is on Maui, 

Hawaii, while KK6PR is in central Oregon. For 
AI6VN/KH6 the lower quartile represents the distance 
to the west coast of N. America. Propagation over that 
path is almost continuous, except for gaps between 2000 
and 0000UTC. About 0200UTC the band opens to the 
US South- then Mid-West (upper quartile and mean 
very close), followed very soon by a step in the upper 
quartile from propagation extending to the Eastern 
Seaboard. About 1300UTC the path to the Eastern 
Seaboard closes. The hours until about 1800UTC 
(spanning sunrise) show more day-to-day variability: on 
29 July propagation was open to Australia (11,000km), 
but not on 30 or 31 July, the path to South Africa 
(19,000km) opened each day, albeit very briefly on the 
31st. 

For KK6PR the overall pattern is similar, but the 
band starts to open to the Eastern Seaboard 2-3 hours 

Figure 5. An example Grafana Dashboard that combines simple time series graphics from three sources with heatmap representation 
of data. The data spans four days for 40m from KA7OEI-1, a KiwiSDR at the Northern Utah SDR site. The top panel shows the 
number of spots received in 20-minute intervals in green, with three-hourly estimates of the planetary geomagnetic disturbance index 
Kp in yellow. The second panel is a heatmap of the number of spots in 20-minute intervals within 1000km distance bins out to 
20,000km. The third panel shows azimuth at the receiver in 15  and 20 minute bins. The bottom panel shows the c2_FFT and 
RMS noise estimates with a distinct diurnal pattern. 



183

Aids to the Presentation and Analysis of WSPR Spots 7 

earlier, at just before 0000UTC, and it is open for 
longer. The increased upper quartile distances spanning 
sunrise were from path openings to Japan, New Zealand 
and Australia. 

While undoubtedly useful, these simple graphs require 
the user to consult listings of spots received to fully 
interpret the paths involved. Presenting the data as heat 
maps of distance and azimuth at the receiver helps 
(admittedly with ambiguity over short and long path). 

5.2 Displaying other data and heat maps alongside WSPR spots  
Figure 5 is an example Grafana Dashboard combining 

simple time series graphics from three sources with heat 
maps. The data spans four days for 40m from KA7OEI-
1, a KiwiSDR at the Northern Utah SDR site [16]. The 
top panel shows the number of spots received in 20-
minute intervals in green, with three-hourly estimates of 
the planetary geomagnetic disturbance index Kp in 

yellow. While there is day-to-day variation, there is a 
daily broad minimum spanning local noon. The heat 
map in the second panel shows a distinct daily 
periodicity in the number of statins received at a distance 
of 2500-4000km – from the Eastern Seaboard – an 
interpretation helped by the azimuth heat map in the 
third panel. However, reference to a list of received spots 
is still needed to check that the first evening DX is from 
South Africa, then New Zealand, followed by Australia 
and Europe. But on some days, southern European and 
North African stations appear during early evening. The 
bottom panel shows the c2_FFT and RMS noise 
estimates with a distinct diurnal pattern suggesting that, 
above the troughs, the noise was being propagated in 
rather than from a local source. 

5.3 Visualizing derived data - SNR difference 
As postgreSQL, the foundation of TimescaleDB, is a 

Figure 6. As postgreSQL is a relational database that allows self-joins a query in Grafana can return data derived from one or more 
receivers. This Dashboard shows the SNR difference between G3ZIL and G4HZX on 40m, for spots from the same sender at the 
same time, as a time series scatter plot in the top panel, as median and lower and upper quartiles in the second panel and as a heatmap 
in the third. Heat maps of spot distance and azimuth at G3ZIL help interpret the SNR difference. 
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relational database it is easy to use join queries, across 
different tables and databases but also within a table (a 
self-join). Grafana's query builder does not have 
sufficient options to construct a self-join but it is 
straightforward to write the necessary postgreSQL 
queries. Figure 6 shows a Dashboard designed to derive 
and plot the SNR difference between any two selected 
receivers where they spotted the same sender at the same 
time on the same band. The SNR difference is shown as 
a scatterplot, as median, lower and upper quartile in 20-
minute intervals and as a heat map. Heat maps of the 
spot distance and azimuth at the first receiver are added 
to help interpretation. 

In this example G3ZIL and G4HZX are 110km apart, 
G3ZIL generally has higher local noise than G4HZX, 
and the antenna is a vertical at G4HZX and a pair of 
low inverted V dipoles at G3ZIL. The statistics and heat 
map panels are the most useful for seeing the SNR 
differences. Clearly, a snapshot over a few minutes or 
even a few hours would not convey the complexity of the 
changes in SNR with time.  

While there are undoubtedly short term variations 
there are clear diurnal (daily) variations as well as longer-
term changes. Comparing the SNR difference and 
distance heat maps show higher SNR at G4HZX during 
hours of darkness with 40m open to the west, to North 
America, as seen in the azimuth heat map. The vertical 
out-performs the low dipoles for signals with low arrival 
angles. Conversely, spanning local noon, the low dipoles 
give a higher SNR than the vertical for signals from 0–
1000km arriving at higher angles. 

6. CONCLUSION 
Implementing a database of our own has reinforced our 
opinion that wsprnet.org does a very good job at data 
collection and fulfilling simple web-based queries. With 
wsprnet.org as the primary data collector we have shown 
how a time series database and a visualization package 
can provide a richer set of data queries and graphical 
output. 

Along the way we learnt about the strengths and 
weaknesses of time series databases. While Influx's 
documentation was excellent and a working system was 
easy to implement it took some time for its drawbacks in 
dealing with the very high cardinality of WSPR data to 
become obvious.  

TimescaleDB's design better suits WSPR data, 
although on a machine with limited memory query 
response times into 10s of seconds occur for data not in 
the current time chunk. Our affordable solution has been 
to move to a server with 192GB of memory, sufficient to 
hold 30 days of WSPR data in memory, and with 
sufficient SSD and disk storage to provide (albeit slower, 

but still online) access to older data when required. 
Grafana comes with built-in connection paths to 

TimescaleDB and other data sources. Its own 
visualization options for time series graphs and heat 
maps are an excellent starting point for examining 
WSPR spot data, as illustrated in this paper. Plug-ins 
from a growing community of third-party sources 
provide an even wider range of options such as forms of 
Hovmöller diagrams where the y-axis is hour of the day 
and the x axis time, and a range of maps. 

Finally, there is clear potential from adding non-
WSPR data. We have only scratched the surface in this 
regard, sourcing geomagnetic disturbance measurements 
from the US Space Weather Prediction Center. 
Through the means outlined in this paper we look 
forward to users making far more of the terrific resource 
that is the global WSPR community and its data. 

Acknowledgment 
We are grateful to Rick Whal (KK6PR), Clint Turner 
(KA7OEI) and Nigel Squibb (G4HZX) for permission to 
refer to their data, to constructive discussion and 
comment from WsprDaemon users at their weekly 
teleconference and to Glenn Elmore for his support, 
advice and indefatigable testing. 

REFERENCES 
[1] github.com/garymcm/wsprnet_api  and derivatives 

such as github.com/dl2sba/WsprNet 
[2] Taylor, J. and Walker, B., 2010. WSPRing around the 

world. QST, 94(11), 30-32. 
[3] www.jimlill.com:8088/today_int.html 
[4] wspr.pe1itr.com/ 
[5] mardie4.100webspace.net/wspr/ 
[6] wspr.aprsinfo.com/ 
[7] wspr.vk7jj.com/ 
[8] apps.apple.com/us/app/wspr-watch/id532487317 
[9]  wspr.fggs.de 
[10] Robinett, R., 2019. WsprDaemon: A low cost, high 

performance, all band WSPR decoding system. ARRL / 
TAPR Digital Communications Conference, Detroit, 2019. 
www.youtube.com/watch?v=nHVN8oUUtlE 

[11] Struckov, A., Yufa, S., Visheratin, A.A. and Nasonov, 
D., 2019. Evaluation of modern tools and techniques 
for storing time-series data. Procedia Computer Science, 
156, pp.19-28. 

[12] docs.influxdata.com/influxdb/v1.8/introduction/get-
started/ 

[13] blog.timescale.com/blog/what-is-high-cardinality-how-
do-time-series-databases-influxdb-timescaledb-compare 

[14] docs.timescale.com/latest/getting-started/installation 
[15] github.com/timescale/outflux 
[16] www.sdrutah.org/ 



185

Packet Compressed Sensing Imaging (PCSI):

Robust Image Transmission over Noisy Channels

Scott Howard, Grant Barthelmes, Cara Ravasio,
Lisa Huang, Benjamin Poag, & Varun Mannam

Department of Electrical Engineering, University of Notre Dame

Abstract

Packet Compressed Sensing Imaging (PCSI) is digital unconnected
image transmission method resilient to packet loss. The goal is to de-
velop a robust image transmission method that is computationally trivial
to transmit (e.g., compatible with low-power 8-bit microcontrollers) and
well suited for weak signal environments where packets are likely to be
lost. In other image transmission techniques, noise and packet loss leads
to parts of the image being distorted or missing. In PCSI, every packet
contains random pixel information from the entire image, and each ad-
ditional packet received (in any order) simply enhances image quality.
Satisfactory SSTV resolution (320x240 pixel) images can be received in
≈1-2 minutes when transmitted at 1200 baud AFSK, which is on par with
analog SSTV transmission time. Image transmission and reception can
occur simultaneously on a computer, and multiple images can be received
from multiple stations simultaneously - allowing for the creation of “image
nets.” This paper presents a simple computer application for Windows,
Mac, and Linux that implements PCSI transmission and reception on any
KISS compatible hardware or software modem on any band and digital
mode.
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1 Introduction

Packet compressed sensing imaging (PCSI) is a solution to the technical chal-
lenge of transmitting a complete image to multiple receivers over a channel
where each receiving station may miss different parts of the transmission due
to channel noise. PCSI is implemented in a way such that a low-power micro-
controller (e.g., Arduino) is capable of transmitting the image from challenging
and remote environments (e.g., high altitude balloon).

PCSI achieves these capabilities by using a technique known as ‘compressed
sensing imaging,” a computational method that allows one to reconstruct a
complete image when only given a random selection of pixels from that image.
Therefore, even after receiving only a single packet of random pixels, the receiver
can begin to reconstruct the complete original image. Each additional packet
received further increasing image quality. PCSI is, therefore, robust against
packet loss.

The initial version of an open-source software tool1 that implements sending
and receiving PCSI in Python for Windows, macOS, and Linux is illustrated in
Figure 1. The image experienced ≈ 50% packet loss, yet the image was fully
reconstructed (bottom frame). In other techniques, 1/2 of the image would be
completely missing.

1.1 Radio Image Transmission Modes Comparison

When transmitting an image, the operator is presented with many possible
methods and must select an image transfer method that best suits the applica-
tion. The following is a quick summary of popular techniques.

1https://maqifrnswa.github.io/PCSI/

2



187

Figure 1: Demonstration of PCSI using pcsiGUI, an open-source tool written in
Python for Windows, macOS, and Linux computers. Only 53.6% of the packets
were received (indicated by the red pixels in the top frame), yet the entire image
can be reconstructed (bottom image). The software tool connects to any KISS
compatible TNC or software modem and is capable of simultaneous (duplex)
receiving/transmitting, and capable of receiving multiple images from multiple
stations simultaneously.
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Analog transmission can either encode an image’s color values using fre-
quency modulation (as in SSTV) or amplitude modulation (as in radiofax). In
all cases, each point is transmitted sequentially; therefore, channel noise and
signal loss leads to color distortion and pixel loss.

Digital techniques divide an image into individual pixels and transmit the
quantized (i.e., represented in binary) values of each pixel’s color channels as
groups of data in packets. Each packet contains additional information that
allows the receiver to check if the received packet was distorted during trans-
mission (e.g., a “checksum” as used in AX.25), and more recently, can correct
for some errors using forward error correcting (FEC) codes (as used in FX.25).
In both cases, unrecoverable errors lead to complete loss of pixel information
for parts of the image.

Digital techniques also allow for the use of compression to send image data
efficiently in fewer bits. A great example of this is slow scan digital video2

(SSDV). SSDV was developed by Philip Heron with the UK’s high altitude
ballooning community to transmit high-quality images. The technique takes
images, converts them to a specific type of JPEG file, and transmits sections of
the JPEG file in packets using FEC. This method transmits high quality im-
ages successfully; however, JPEG encoding and FEC generation is prohibitively
complex for low-memory microcontrollers, and signal loss leads to missing parts
of the image.

Hence, there is a need to develop a computationally simple image transfer
method that is robust to signal loss and channel noise.

1.2 PCSI’s Predecessors

In developing PCSI, we found that the idea of transmitting limited information
over a noise channel while ‘filling in the blanks” at the receiving end were present
in at least two other technologies.

APRS Vision System: At the 1997 DCC, Bob Bruninga (WB4APR)
proposed the “APRS Vision System.”3 That approach was an attempt to relay
imaging information over the APRS network. The idea was to transmit APRS
packets that contain increasingly higher amounts of spatial information content.
The first packet contained an extremely low quality image, and each subsequent
packet doubled the resolution. When the receiver feels the image is “clear
enough” (i.e., the receiver can ”fill in the gaps” in the image), the receiver can
tell the sender to stop. This way the receiver can possibly control or react to the
image before the whole image became “clear.” However, this system required
that every previous packet had been received perfectly for subsequent packets to
be used, and the receiver needed to communicate with transmitter to indicate
missed packets and to stop. Any missed packet caused the whole system to fail
from that point forward.

Hellschreiber: This mode, developed in the mid 20th century, is a fasci-

2https://ukhas.org.uk/guides:ssdv
3https://www.tapr.org/pdf/DCC1997-APRSvision-WB4APR.pdf
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nating approach that enabled robust transmission of text over noisy channels.4

Each character of text to be transmitted is converted in to a 7x7 pixel image
of that character. Each character is then transmitted using extremely nar-
row bandwidth transmission (e.g., on-off CW keying). The receiver takes the
received data and reconstructs the image. The operator then “reads” the re-
sulting image text. Fundamentally, the operator’s trained character recognition
neural network (i.e., their brain) does pattern recognition to “fill the the gaps”
in the image that was caused by channel noise and signal loss. The entire mes-
sage can therefore be received even if some pixels were not received or if noise
distorted some pixels.

2 The Magic in the Math

While it may seem “too good to be true” to be able to fully reconstruct an
entire image using only a few randomly selected pixel values, PCSI is made pos-
sible via the magic in the math. PCSI accomplishes this using two techniques:
compressed sensing imaging and chroma compression.

2.1 Compressed Sensing Imaging

The mathematical concept of compressed sensing imaging exploits the fact that
data can often be represented in “sparse” domains. By “sparse,” we mean that
“most of the values are zero.” For example, compare a photograph of a blooming
garden during the day to a photograph of the night sky. The image of the garden
will have lots of red, green, and blue color, and therefore, many non-zero values
for the R, G, and B channels in the image. The night sky is mostly empty, with
a few stars, planets, and the moon. The nigh sky image, therefore, has many
pixels that have zero value in the R, G, or B channels. We would say the garden
image is not sparse while the night sky is sparse.

The magic happens when you convert the image from the spatial domain (i.e.,
a photograph) to another “domain.” For example, you can perform a mathe-
matical operation on an image called the discrete cosine transform (DCT). The
resulting DCT “image” ends up containing all the same information from the
original image, just arranged in a different way. You can then do an inverse
discrete cosine transform (IDCT) on the “DCT image,” and you will restore the
original image accurately. Why would we want to take the DCT of an image?
We do this because practically all images are “sparse” after taking the DCT.5

In other words, most of the values of the DCT of an image are zero! Both the
garden and night sky look sparse after taking the DCT!

How can we use the fact that most images are sparse after taking the DCT?
This is the magic of PCSI. You ask the computer to find the DCT of an image
such that:

4https://www.nonstopsystems.com/radio/hellschreiber-function-operation.htm
5Technically, the image is sparse in the DCT domain because cameras typically massively

“oversampling” an image.
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1. The values for the DCT it finds has a lot of zeros in it (i.e., is sparse).

2. When you reconstruct the image using the values for the DCT the com-
puter found, the resulting real image closely matches whatever values of
the pixels that were received

Mathematically, you are asking the computer to do something similar to
“basis pursuit denoising” to find the simplest image (i.e., the fewest non-zero
DCT values) that also matches the pixels that you have received so far. You can
do that by using a computer program to find the values of the DCT of the final
image (X) such that it gives you the smallest value of the following expression:

∑

n

|IDCT(X)n − bn|2 + C
∑

|X| (1)

where bn is the value of the nth pixel that was received, and C is a scaling factor
(typically in the range of 3-5). The first term is the sum of the squared error
between the values of the pixels in the reconstructed image and the value of the
pixels that were actually received. Ideally, this will be zero. The second term is
the L1 norm, which is adding up all the values of X, and minimizing that term
is a good method for finding a sparse X. Once you find X, you can take the
IDCT of X to find the reconstructed image.

While the current PCSI reference implementation does use the above basis
pursuit technique, it is just one of many ways to reconstruct an image from
a collection of random pixels. PCSI actually does not require any particular
reconstruction algorithm as there may be variations in the method that yield
superior results.

2.2 Chroma Compression and Color Depth

PCSI image transmission speed is increased by reducing the bit depth of an
image and by utilizing chroma compression. These techniques are described
below.

• Bit Depth: Reducing an image from 24 bit color (8-bit in each of R, B,
G) to 12 bit color (or any other color depth) is trivial, may be acceptable
for many applications, and therefore is an option in PCSI.

• Chroma compression: The human eye has 20-times high density of
rods (greyscale photoreceptors) than cones (color photoreceptors), and
therefore detects greyscale with better spatial resolution than color. It
is therefore not necessary to transmit the same resolution for both luma
(brightness) and chroma (color information). JPEG exploits this by repre-
senting an image in the YCbCr color space and sub-sampling the chroma
channels (Cb and Cr) relative to the luma channel (Y). PCSI uses the same
general concept and achieves chroma compression by sending a combina-
tion of full-color (YCbCr) and greyscale-only (Y) pixels in each packet.
This step leads to the receiver receiving more Y channel pixels than Cb

6
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and Cr channel pixels. Each channel, separately, undergoes the com-
pressed sensing basis pursuit to reconstruct the original channel, and the
channels are then converted back to RGB. The resulting image appears
to have much higher quality for the same number of packets.

3 Implementation: The PDP Specification

PCSI requires packet payloads such that each individual payload contains all
the information necessary to reconstruct a single image. To achieve that, the
pseudo-random datagram payload (PDP) specification has been developed. Ver-
sion 1.0.0 is described below.

3.1 What is the PDP?

PDP is a specification for the payloads of data packets such that each packet
contains all the information needed to reconstruct a single image. An image is
then transmitted as the collection of datagrams (i.e., packets in a connection-
less network). Unlike other packetized image transmission formats, the pixels
contained in a packet are selected in a pseudo-random, yet deterministic, way.
This allows images to be restored using compressed sensing techniques regardless
of packet loss.

3.2 PDP Specification Scope

The PDP spec merely defines the packet payload for the transmission of a
single image. It can be used in any packet protocol or digital mode. Framing is
independent of the specification. This allows for the separation of a “session”
(consisting of a sending station sending one or more images) from the minimal
content required for a single image. The “session” information is in the framing;
the image information is in the payload. The payload is designed to be similar
to SSDV.

For example, a PDP can be placed as the payload in:

• AX.25 amateur radio packets. Transmitted using any mode (e.g., AFSK,
PSK, etc.) Therefore it is compatible with APRS, TNCs, digipeaters,
software modems (direwolf, fldigi, soundmodem, etc.). Example imple-
mentation is in Section 3.2.1.

• SSDV-style framing done in a KISS TNC compatible way. Example im-
plementation is in Section 3.2.2.

• UDP or TCP (although the benefits of PCSI provide more benefit to
multicast UDP packets than connected TCP packets).

7
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Name Size (bits) Description

Flag 8 HDLC flag ‘0x7E’
Dest. Address 56 Callsign of intended receiver OR alias of an

image net, encoded following AX.25 spec.
‘PCSI‘ recommended for general use.

Source Address 56 Sender’s callsign encoded following AX.25
spec. ‘PCSI’ recommended for general use.

Digi Addresses d× 56 d optional digipeater addresses, encoded fol-
lowing AX.25 spec.

Control 16 ‘0x03F0’ indicating UI frame with no re-
sponse requested, and no layer 3 imple-
mented

PDP N × 8 PDP data, N ≤ 256
FCS 16 CRC-CCITT
Flag 8 HDLC flag ‘0x7E’

Table 1: Example AX.25 framing that could be used for PCSI.

Offset (bytes) Name Size (bytes) Description

0 Flag 1 HDLC flag ‘0x7E’
1 Packet Identifier 1 ASCII ‘v’ = ‘0x76’
2 Callsign 4 Base-40 encoded call-

sign following SSDV
encoding convention

6 PDP N ≤ 256 PDP data
N+6 Checksum 2 CRC-CCITT
N+8 Flag 1 HDLC flag ‘0x7E’

Table 2: Example SSTV-style framing that could be used for PCSI.

3.2.1 AX.25 Framing

While not part of the PDP spec, an example of using AX.25 UI framing6 of a
PDP is given in Table 1. This is easily compatible with existing TNCs. This
framing adds at least 20 bytes of overhead.

3.2.2 SSDV-style Framing

While not part of the PDP spec, a simple session framing of PDP can be done in
a way that is compatible with existing KISS hardware and software TNCs. An
example is seen in Table 2. This example framing is designed to be easy to use
with any KISS TNC. One would simply send the concatenated “Packet Identifier
+ Callsign + PDP” and let the TNC add the flags and do the checksum. This
framing adds at least 9 bytes of overhead.

6https://www.tapr.org/pdf/AX25.2.2.pdf
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Figure 2: Comparison of net bit efficiency versus PDP payload size for both
SSDV-style and AX.25 framing.

3.2.3 Framing Comparison

Both AX.25 framing and SSDV-style framing can be used. AX.25 is more
powerful as it can leverage existing packet radio infrastructure at the cost of
of larger overhead. However, if channel bit error rate (BER) is high (as is
common in longer-distance HF modes), smaller packets are more likely to be
successfully received. The lower overhead SSDV-style framing may be superior
in this case. This trade-off is explored in Figure 2. The net efficiency (percent of
each transmitted bit that will successfully transmit pixel-level image information
to the receiver) is calculated as the product of the probability that the entire
packet will be received properly and the percentage of bits in a packet that
correspond to pixel information.

Net Efficiency AX.25 =
x− 7

x+ 20
× (1− BER)8x+160 (2)

Net Efficiency SSDV-Style =
x− 7

x+ 9
× (1− BER)8x+72 (3)

(4)

where x is the total PDP length in bytes and the term x − 7 comes from the
fact that the PDP has a 7 byte header as described in 3.3.

Results from Figure 2 give guidelines for ideal PDP length. First, find the
approximate BER by estimating packet loss for an AX.25 packet with a 256
byte payload using the equation:

BER = 1− (1− L/100)1/2192 (5)
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Figure 3: BER vs packet loss for AX.25 frames with 256 byte payloads.

where L is packet loss in percent. If the packet loss percentage is known (or
can be estimated), BER can be found using Equation 5, which is depicted by
Figure 3.

Now based on the estimated BER, you can choose the appropriate framing
style and PDP size (refering to Fig. 2):

• For low BER ≤ 10−5 Environments: Framing style does not matter that
much, and payloads should be the full 256 bytes long.

• For BER ≈ 10−4 Environments: Framing style does not matter that much,
and payloads should be 130 bytes long.

• For BER ≈ 10−3 Environments: SSDV-Style framing increases efficiency
(and speed) by ≈ 25% compared to AX.25. Payloads should be 40-50
bytes long.

• For BER ≈ 10−2 Environments: AX.25 is practically unusable; SSDV
framing will barely be usable. Payloads should be 10-11 bytes long.

3.3 PDP Specification Details

Since each packet contains information of the whole frame, each packet MUST
be the same size of every packet in an image (same number of pixels per packet).
Total packet size is determined by the framing protocol used. For example,
AX.25 packet payloads are 256 bytes by default. The payload contains the
following data transmitted in order as described by Table 3.

3.3.1 Packet Payload Preparation

Given a bit mapped image to transfer, follow the following procedures

1. Using a pseudo-random number generator (see Section 3.3.2), generate the
sequence of pixels to be transmitted.

10
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Offset
(bits)

Name Size
(bits)

Description

0 Image ID 8 Identifies unique images within a PCSI
session. (uint8)

8 Rows 8 Number of lines in the image divided
by 16. (4096 lines max, uint8)

16 Columns 8 number of columns in the image di-
vided by 16. (4096 columns max,
uint8)

24 Packet ID 16 used as the starting point of the pseu-
dorandom pixel list. (uint16)

32 Number
of YCbCr
Pixels

8 Number of full color pixels transmitted
in this packet. (uint8)

40 Color
depth

8 Color depth encoded as (color depth/3
-1). e.g., 24bit color = 7. This only
uses 3 bits, so there are 5 bits available
for future use. (uint8)

48 YCbCr
Pixel
Data

(Number
of YCbCr
Pixels) *
(Color bit
depth)

Full color (YCbCr) pixels listed first as
a binary stream. For example, if color
is transmitted as 12-bit color, each
pixel is 12-bits long with the first 4 cor-
responding to the Y channel, the next
four corresponding to the Cb channel,
and the final 4 corresponding to the Cr
channel.

48 +
(YCbCr
Pixels) *
(Color bit
depth)

Y-only
Pixel
Data

N Black and white (Y only) pixels follow
in a binary stream of Y values encoded
as a uint with the same bit depth as a
single channel of the YCbCr pixels.

Zero
padding

Z Zero padding for byte alignment as
needed.

Table 3: PDP Specification Version 1.0.0
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2. Given the number of bits available in the payload (e.g., AX.25 UI frames
have 256 bytes minus 7 bytes of image info equals 1992 bits total), the de-
sired chroma compression level, and the desired color bit depth to trans-
mit, determine the list of pixels to transmit that will be full color and
solely back and white.

(a) All packets consist of the same number of pixels (e.g., every packet
for an image has exactly 25 YCbCr pixels and 75 Y only pixels for a
total of 100 pixels. You can choose whatever numbers you want, as
long as they are the same for every packet of the image).

3. Prepare the packet payload

(a) Convert full color pixels to YCbCr per ITU-T T.8717 and black and
white only pixels to Y as per the same spec.

(b) If color bit depth is being reduced, approximate the value to be trans-
mitted using rounding. For example, the 8 bit number 200 will be
represented as the 4 bit number round(200/255*15)=12.

3.3.2 Pseudo-random Number Generation for Picking Pixels

Compressed sensing imaging requires that the measurements are uncorrelated
in the sparse domain that is used to reconstruct the image. Taking random
samples ensures this condition, however, both the transmitter and receiver need
to know which pixel values correspond to which pixels in the image. To do
this, PCSI uses a Linear Congruential Generator8 as a deterministic pseudo-
random number generator using GCC’s default coefficients (modulus = 231,
a = 1103515245, c = 12345, starting with a seed = 1). The pseudo-random
number generator is then used with the modern Fisher Yates shuffle algorithm9

to generate a random list of the pixels to be sent. See reference code for details.
This approach will allow all receivers and the transmitter to generate identical
lists of order that pixels will be transmitted. Since every packet has the same
number of pixels, the packet ID will give the receiver the starting pixel number
from which the list of pixels received in the packet can be extracted.

Pixels are indexed column-first as seen in C, not row first as is typically
done in Python. You therefore have to transpose a matrix before selecting and
assigning pixels if you are working in Python.

3.3.3 PCSI Payload base91 Encoding

If you are transmitting over channels that only allow printable ASCII text, the
entire PDP can be converted to base91 as described below. This is a combination
of APRS base91 and basE91.10 Compared to basE91, the method used in PCSI
is simpler and deterministic at the cost of slightly more overhead.

7https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion
8https://en.wikipedia.org/wiki/Linear_congruential_generator
9https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

10http://base91.sourceforge.net/
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While there are 13 bits or more to convert, read in 13 bits Convert those 13
bits to two ASCII bytes using [floor(bits/91)+33] for first and [bits%91+33] for
the second byte. Next, if there are fewer than thirteen and more than seven bits
available (the end of the stream), read in and zero pad (to the right, i.e., least
significant bits) the remaining bits so that there are 13 bits total. Convert those
13 bits to two ASCII bytes using [floor(bits/91)+33] for first and [bits%91+33]
for the second byte If there are 6 or few bits remaining: Read in and zero pad
(to the right, i.e., least significant bits) the remaining bits so that there are 6
bits total. Convert those 6 bits to one ASCII byte using bits+33.

3.4 Reconstructing PCSI Images

There is no specification or standard on how to reconstruct the images. Users
can experiment with different methods and find what is appropriate. The ref-
erence implementation follows these steps:11

1. Decode all the pixel values and pixel numbers from as many packets as
have been successfully received.

2. For each color channel (Y, Cb, Cr), use OLW-QN for basis pursuit12 to find
the discrete cosine transform (DCT) coefficients that best fit the received
data and minimizes the L1 norm. This is the key to compressed sensing!

3. After finding the DCT coefficients, use the inverse DCT to generate the
color channels for the image.

4. Convert from YCbCr to RGB, and save the image.

4 Future Work

PCSI is available for use any band and KISS compatible TNC or software mo-
dem. Now that it has been demonstrated, some additional features can be
explored:

• Low-power micro-controller transmission client: PCSI transmis-
sion is computationally simple enough to be performed on low-memory
micro-controllers. High-altitude balloons would benefit from integrating
PCSI transmission with Arduino radios such as the HamShield.13

• PCSI aggregation server: Since different stations can receive different
packets, and increasing the packets increases image quality, a centralized
server can be used to aggregate packets to improve image quality. This sys-
tem would be similar to the Automatic Picture Relay Network (APRN14)

11based on http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
12https://en.wikipedia.org/wiki/Limited-memory_BFGS#OWL-QN
13https://inductivetwig.com/
14http://www.aprs.org/aprn.html

13
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and to what is done with SSDV15 to receive images from high-altitude
balloons that move out of range of the original receiving system.

• Integrate PCSI with APRS: While transmitting entire PCSI images
over APRS channels would severely strain the network, APRS could be
leveraged to announce ongoing transmission or upcoming “ImageNets”
on non-APRS frequencies. APRS frequency objects can be transmitted
following the conventions of the Automatic Frequency Reporting System16

(AFRS) and APRS Local Frequency Info Initiative.17

15http://ssdv.habhub.org/
16http://www.aprs.org/afrs.html
17http://www.aprs.org/localinfo.html

14
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List of Terms

Notation Meaning
AFSK Audio Frequency Shift Keying
APRS Automatic Packet Reporting System
ASCII American Standard Code for Information Interchange
AX.25 Amateur X.25
BER Bit Error Rate
CRC Cyclic Redundancy Check
CW Continuous Wave
DCC Digital Communications Conference
DCT Discrete Cosine Transform
FCS Frame Check Sequence
FEC Forward Error Correction

FX.25 Extension to AX.25 with FEC
GCC GNU Compiler Collection
GUI Graphical User Interface

HDLC High-Level Data Link Control
HF High Frequency

IDCT Inverse Discrete Cosine Transform
ITU International Telecommunication Union

JPEG Joint Photographic Experts Group
KISS Keep It Simple, [Silly]
PCSI Packet Compressed Sensing Imaging
PDP Pseudo-random Datagram Payload (PDP)

OLW-QN Orthant-Wise Limited-memory Quasi-Newton
RGB Red, Green, Blue
SSDV Slow Scan Digital Video
SSTV Slow Scan Television
TCP Transmission Control Protocol
TNC Terminal Node Controller
UDP User Datagram Protocol

UI User Interface
YCBCR Luma, blue-difference and red-difference chroma components

15
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