

The AERO/VISTA Twin Small Satellite Project

P. J. Erickson¹, F. D. Lind¹, M. Knapp¹, M. Hecht¹,
G. Crew¹, R. Volz¹, J. LaBelle², F. Robey³, K. Cahoy⁴,
B. Malphrus⁵, J. Vierinen⁶, A. Weatherwax⁷

¹MIT Haystack Observatory
²Dartmouth College
³MIT Lincoln Laboratory
⁴MIT AeroAstro
⁵Morehead State University
⁶University of Tromsø
7Merrimack College

Outline:

- Mission Overview
- Science and Technical Targets at HF Frequencies
- Electromagnetic Vector Sensor: High Dimensional Interferometry
- Collaborative Science, including the Amateur Community

DARTMOUTH

nterferometry nunity TAPR Digital Communications Conference 2020 11-12 Sep 2020

Auroral Emissions Radio Observer (AERO)

- \$4.2M over 4 years
- NASA Heliophysics Technology and Instrument Development for Science (H-TiDES) 2017
- HF radio capture (0.1 5 MHz)
- Primarily **SCIENCE** focused: radio aurora

Vector Interferometry Space Technology using AERO (VISTA)

- \$3.5M over 3 years
- NASA H-TIDES 2018

- dimension interferometry

https://www.haystack.mit.edu/geospace/geospace-projects/aero-vista-cubesat-mission/

E

MERRIMACK COLLEGE

MIT HAYSTACK OBSERVATORY

DARTMOUTH

• HF radio capture (0.1 - 15 MHz) Build-to-print copy of AERO • Primarily **TECHNOLOGY** focused: high-

- ♦ 6U cubesat (20 cm x 30 cm x 10 cm)
- Noon-midnight sun sync orbit (450+ km altitude)
- Deployable antenna (100 kHz – 15 MHz)
- Auroral science targets: 100 kHz – 5 MHz
- Interferometry targets: up to 15 MHz
- Auxiliary Sensor Package (ASP) including magnetometer and optical aurora sensor
- AERO and VISTA: 2x auroral science platforms

Mission duration: 90 days Nominal launch: 2022

AERO PI: P. J. Erickson VISTA PI: F. D. Lind

Mission Science Target: The Radio Aurora

- Optical aurora has structures and dynamics on vast number of scales
 - Temporal: < msec to hours
 - Spatial: < m to >10s km
- Radio aurora also exists
 - Far less studied
 - > 1 GW EIRP radiated
 - Coherent plasma waves
 - Magnetic field direction plays a large role (electron gyromotion)
- Many radio auroral emissions in LF/HF and only observable from orbit: ionosphere blocks them from ground view

AERO + VISTA Nominal Orbit Simulation

- Low Earth orbit: nominal 450 - 600 km
- Sun-synchronous orbit to intercept nighttime auroral regions: between [2100, 0200] local time
- Launch provided through NASA CubeSat Launch Initiative (CSLI):

Ride-share launches to space via existing launch services of government payloads, or dedicated launches from VCLS contracts

(simulation: Vince Skelton, Merrimack College)

Ionospheric Cutoff: Langmuir Resonance

 $N_e e^2$ ω_{pe}^2 $m_e \epsilon_0$

Langmuir frequency

Typical 1-12+ MHz: reflects incoming waves above F region

MIT HAYSTACK OBSERVATORY

Irving Langmuir 1881 - 1957 Nobel Prize, chemistry 1932

- Fundamental resonance property of any plasma
- Interaction provides hard reflection at HF
- Principle behind ionosondes

Basic concept of the operation of an ionosonde

https://www.electronics-notes.com/articles/antennas-propagation/ ionospheric/ionosonde-ionogram.php

Radio Auroral Emission Types (1)

Туре	frequency	polariz'n	outstanding proble
Auroral Hiss	<1 MHz (below f _{ce})	Right (W-mode)	Structure: hisslers, LF o Dayside/nightside Source altitudes
Auroral Kilometric Radiation AKR	50-750 kHz (below f _{ce})	Right	Confirm connection How W-mode generated Ducted? Area illuminate Remote sensing applicat
Auroral Roar	$2f_{ce}, 3f_{ce}, 4f_{ce}, 5f_{ce}$	Left (sometimes Right?)	Nonlinear mode convers
Medium Freq Burst	1.5-4.5 MHz (above f _{ce})	Left (L-mode)	Generation mechanism Use for substorm onset Connected to Langmuir

f_{ce} = electron gyrofrequency ~ 0.8-1.2 MHz in LEO

Example: Auroral Kilometric Radiation

cutoff etc.

- 1? ted? tion?
- sion?
- timing? cavitation?
- ??? I should not see this from the ground!

- LF, HF frequencies
- Some broadband, others narrow band
- Electromagnetic propagating modes -> both E and B
- Polarized!
- Source regions probably far above LEO orbits
- Many, many unanswered generation and HF propagation questions

Radio Auroral Emission Types (2)

(Weatherwax, Labelle)

DARTMOUTH

MERRIMACK College

Time (UT)

Erickson et al. TAPR DCC 2020-09-12

Electromagnetic Vector Sensors

MIT HAYSTACK OBSERVATORY

- 3 dipoles + 3 loops
- (electrically small)
- •Measures full E and B field vectors, ExB = S (Poynting vector)
- Determines sources' intensity, direction and polarization in single snapshot
- •Typically used for finding direction of strong sources, can also perform spatially resolved imaging
- •Can localize human signals (beacons) or natural signals (radio aurora)

DARTMOUTH

(M. Silver, MIT Lincoln)

AERO/VISTA Spacecraft Hardware

MIT HAYSTACK OBSERVATORY

DARTMOUTH

Erickson et al. TAPR DCC 2020-09-12

Electromagnetic Vector Sensor Direction-Finding Example (1)

MIT HAYSTACK OBSERVATORY

- Onboard processor cross-correlates every element with every other element (E1, E2, E3, B1, B2, B3)
- Upper triangular matrix
- Sources can be Gaussian random as long as mean/ variance properties are wide-sense stationary
- Covariance analysis allows a sensor with broad response pattern to achieve source direction finding (interferometry)
- Relatively insensitive to platform orientation

Erickson et al. TAPR DCC 2020-09-12

Electromagnetic Vector Sensor Direction-Finding Example (2)

Algorithm convergence for 2 points, Stokes I Parameter

MIT HAYSTACK OBSERVATORY

- Iterative processing provides angle of arrival of compact sources
- Not completely unambiguous in all situations
- Auroral sources should be reasonably bright and compact, which helps

cf.

R. Volz, M. Knapp, F. D. Lind and F. C. Robey, "Covariance estimation in terms of Stokes parameters with application to vector sensor imaging," 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2016, pp. 1339-1343, doi: 10.1109/ACSSC.2016.7869593.

Erickson et al. TAPR DCC 2020-09-12

Coordinated Science Observations: Maximizing a Cube Sat

AMISR / EISCAT 3D Incoherent Scatter Radar Auroral Diagnostics

HF Radar Auroral Diagnostics (SuperDARN)

MIT HAYSTACK OBSERVATORY

Optical Auroral Diagnostics

Semeter et al. 2009

Ground Based Radio **Receivers**

Labelle 2006

Mission Technical Target: Radio Interferometry From Orbit

MIT HAYSTACK OBSERVATORY

- Interferometry
 - Combine signals from two antennas
 - Phase measurement
 - Yields in the end good angular resolution
 - But.. ambiguities exist for spaced antenna set: results in "fringes", especially when your antennas are in motion
- Vector Sensor (VS) Interferometry
 - Each VS provides an angle of arrival estimate
 - This acts like a set of short interferometer baselines!
 - Additional degrees of freedom available
 - Estimate additional quantities (e.g. polarization)
 - Improve variance of estimates
 - Scales rapidly with number of satellites
- Mathematical development for this is complex and is ongoing
- Special considerations in a plasma environment
 - Sensor is immersed in a non-symmetric dielectric medium
 - Response is different depending on the angle you view with respect to B!
 - Frontier topic for space based radio remote sensing

AERO/VISTA and the Amateur Radio Community

DARTMOUTH

- Coherent beacons useful for VS interferometry "signals of opportunity"
 - Where do they leak out of the ionosphere?
 - Does interferometric processing agree with known locations?
 - Small antennas with wide patterns beneficial: no steering needed of beacon TX
- Potential wide area capture of UHF AX.25 downlinks / heartbeats (discussion ongoing in A/V telemetry team), coordinated with e.g. SatNOGS efforts
- General ionospheric HF propagation science, in coordination with HamSCI, TAPR, ARRL Frequency Measurement Tests, etc.

https://www.hamsci.org

ERO

Collaborative Ground-Satellite, Amateur-Professional Science

Radio Science

RESEARCH ARTICLE

10.1029/2017RS006496

Key Points:

- Amateur radio transmissions are used to detect plasma cutoff and single-mode fading
- Fundamental ionospheric characteristics and magnetoionic phenomena can be studied with amateur radio transmissions
- New and compelling radio science experiments are possible with the participation of citizen radio scientists

Citizen Radio Science: An Analysis of Amateur Radio Transmissions With e-POP RRI

G. W. Perry¹ (D), N. A. Frissell^{2,3} (D), E. S. Miller⁴ (D), M. Moses² (D), A. Shovkoplyas⁵, A. D. Howarth¹ (D), and A. W. Yau¹ (D)

¹Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada, ²Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, ³Now at Center of Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, USA, ⁴The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, ⁵Afreet Software, Richmond Hill, Ontario, Canada

Abstract We report the results of a radio science experiment involving citizen scientists conducted on 28

Figure 5. A visualization of the estimated propagation paths of ham radio links established on the CW portion of the 40 m band during the Field Day experiment according to RBN records. The identified hams are marked by color. It is evident that hams were continuously transmitting during the entirety of the Field Day experiment. (a) 0112-0113 UT; (b) 0113-0114 UT; (c) 0114-0115 UT; (d) 0115-0116 UT; (e) 0116-0117 UT; (f) 0117-0118 UT.

DARTMOUTH

COLLEGE

Erickson et al. TAPR DCC 2020-09-12

- Canadian ePOP HF radio receiver
- Propagation dependence provided dynamic reception for ground-to-satellite links, depending on conditions
- Amateur TX used as sources

AERO/VISTA: Add interferometry!

- AERO + VISTA will address radio science of the aurora at HF frequencies
- Novel EM vector sensor in low Earth orbit allows direction finding of natural, human HF sources
- HF propagation science with amateur radio collaborations

Summary

https://www.haystack.mit.edu/ geospace/geospace-projects/ aero-vista-cubesat-mission/

© 2020 Massachusetts Institute of Technology.

This material is based upon work supported by the MIT under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of MIT.

