
CPU16 Instruction Set Page 1 of 14

07/19/09

CPU16A instruction Set

1. Introduction

The CPU16A is a 16-bit Von Neuman architecture processor with a single address space
shared between data and instructions. The dual-port memory provided by FPGAs allows
simultaneous instruction fetches and data manipulation giving the performance of a Harvard
architecture machine. The instruction set uses 5 basic formats as shown in figure 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CALL Type Absolute Address

JMP/LOOP/RET Type Op. Condition Relative Address
Immediate Data Type Op. Constant A

I/O Type Operation Port A
ALU Type Operation Modifier B/C A

Figure 1 – Basic Instruction Format

Program-control instructions use two address formats. Call instructions use a 14-bit absolute
address and can access the entire 16,384 words of program memory. Jump instructions use a
9-bit relative address and can access the previous 255 or next 256 instruction locations. The
jump is taken if the condition specified by a 3-bit field is satisfied. Otherwise instruction
execution continues in sequence. The full program address space can be accessed by loop
instructions that use a 14-bit absolute addresses stored by the mark instruction. This allows
backward jumps to any location.

ALU instructions may operate on 16-bit words, the lower 4 or 8-bits of a word or any single bit.
Most use register A as the source for one operand and the destination for the result. The
second operand may be register B or a signed 8-bit constant that is extended to 16 bits. 16-bit
values can be loaded with two instructions. The first holds the least significant byte and the
second holds the most significant byte of the word.

I/O instructions use a 7-bit direct address to identify up to 128 16-bit wide I/O ports. Memory
access instructions use a 14-bit indirect addresses stored in register B. Register A contains the
data to be written to memory and is the repository for any data read from memory.

Assembler syntax uses 3 fields. The label field contains either blank space or an alphanumeric
name followed by a colon. The operation field contains a 2-4-character instruction name. The
operand field contains nothing, a single parameter or two parameters separated by a comma.

Label: OP Rd,Rs ; comments

Operands may be register names (SP and R1-R15), address labels or constants in binary,
decimal, hexadecimal or alphanumeric format. A binary number starts with “#”, a hexadecimal
number starts with “$” and a 1 or 2 character string is delimited by single quotes (‘).

CPU16 Instruction Set Page 2 of 14

07/19/09

2. Program Flow Control

The program control instructions are listed in figure 2. Calls are unconditional and the call uses
absolute addresses. The jump, loop and return instructions may be conditional or
unconditional. Jump instructions use addresses that are relative to the program counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CALL 00 Absolute Address
JMP 01 00 Condition Relative Address
RET 01 01 Condition 0

LOOP 01 01 Condition 1
MARK 01 10 0 0
STRA 01 10 0 1
REP 01 10 1 000 Count

Figure 2 – Program Control Instructions

Three condition flags may be tested as shown in figure 3. The C, V and Z bits are the carry,
overflow and zero flags for comparison operations and for 16-bit arithmetic operations,
including add, subtract, increment and decrement. The C bit is also altered by bit test and
shifting operations. The Z bit is necessary for loop control and the C bit is necessary for multi-
word shifts and software multiplication and division routines.

Condition Description
000 Always
001 Never (NOP)
010 V set by previous arithmetic or comparison instruction
011 V reset by previous arithmetic or comparison instruction
100 Z set by previous arithmetic or comparison instruction
101 Z reset by previous arithmetic or comparison instruction
110 C set by previous arithmetic, comparison, shift or bit test instruction
111 C reset by previous arithmetic, comparison, shift or bit test instruction

Figure 3 – Jump Conditions

The assembly language representation is an instruction name that specifies any condition
code followed by an operand specifying the absolute address for calls or the relative address
for jumps. Mark, return and loop instructions have no operand. Repeat has a single numeric
operand.

JMP loads the program counter (PC) with the specified address and continues program
execution from that location. JV, JNV, JZ, JNZ, JC and JNC jump if the V bit is true, the V bit is
false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset. Otherwise,
execution continues with the next instruction in sequence. The operand may be a label or a
numeric value.

CPU16 Instruction Set Page 3 of 14

07/19/09

Here: JMP $0
JNZ there

CALL pushes the next instruction address onto the return address stack and then jumps to the
specified address. The address is stored temporarily in a register while the stack pointer is
incremented and then written into the dedicated RAM holding the return address stack. It
contains up to 16 return addresses to allow subroutine nesting up to 16 levels. There is no
overflow or underflow indication. . The operand may be a label or a numeric value.

Here: CALL $0
CALL There

The RET (return) instruction restores the address in the address stack to the program counter
and continues execution from that location. RV, RNV, RZ, RNZ, RC and RNC return if the V bit
is true, the V bit is false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset.
The stack pointer is decremented after the address is read. There are no operands.

There:RET

The MARK instruction pushes the next instruction address onto the return address stack
without jumping. It is used with the LOOP instructions for long backward jumps.

The STRA instruction pushes the contents of the selected register onto the return address
stack. It is used with the RET instruction for indirect jumps.

STRA R15

The LOOP instruction restores the address in the return address stack to the program counter
and continues execution from that location. LV, LNV, LZ, LNZ, LC and LNC loop if the L bit is
true, the V bit is false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset. The
stack pointer is decremented if the loop is exited.

LDL R1,256
MARK
NOP ; do this 256 times
DEC R1
LNZ

The REP (repeat) instruction causes the next instruction to execute count + 2 times. It inhibits
incrementing the program counter so the same instruction is issued multiple times with no
additional overhead. The assembler calculates the correct value for the count field given the
number of times to repeat the next instruction.

REP 256
NOP ; do this 256 times

CPU16 Instruction Set Page 4 of 14

07/19/09

3. Memory Access and I/O

Figure 4 shows the format of the immediate data, input and memory access instructions. They
do not alter any flags.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MVI 01 11 Data A
OUT 10 111 Port A
IN 11 000 Port A

WR 11 001 0 0 1 B A
RD 11 001 0 1 0 B A

XCHG 11 001 0 1 1 B A

Figure 4 – I/O and Memory Access Instructions

The MVI instruction replaces the lower 8 bits of register A with immediate data and the sign is
extended to the upper 8 bits. The LOAD pseudo-operation generates two MVI instructions in
sequence to load a 16-bit constant into a register. The first MVI loads the lower 8 bits with sign
extension and the second MVI replaces the upper 8 bits. The LDA pseudo-operation generates
two MVI instructions to load a 14-bit address into a register.

MVI #01111110
LOAD $3AB4
LDA label

Output instructions use direct addressing to access up to 128 ports up to 16 bits wide. OUT
copies the contents of register A to the selected port by placing the port address on IOADDR,
the data on DOUT and asserting IOWR. Input instructions use direct addressing to access up
to 128 ports up to 16 bits wide. IN copies the contents of the selected port from the DIN bus to
register A and asserts IORD.

OUT R1,48 ; numeric port number
IN R1,data ; port number defined by EQU

Memory access instructions use register indirect addressing of up to 65,536 words of memory.
Both reads and writes complete in one clock cycle. Write (WR) copies the contents of register
A to the memory location at the address in register B. Read (RD) copies the contents of the
memory location at the address in register B to register A. Exchange (XCHG) copies the
contents of memory location B to register A while writing the content of register A to memory
location B.

RD R2,R1 ; contents of memory at address in R1 copied to R2
WR R3,R2 ; contents of R3 copied to memory at address in R2

CPU16 Instruction Set Page 5 of 14

07/19/09

4. Arithmetic Operations

The 4, 8 and 16-bit arithmetic instructions are encoded as shown in figure 5. The carry,
overflow and zero flags are updated for 16-bit arithmetic operations but not for 4-bit or 8-bit
operations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADI 10 00 C A
CPI 10 01 C A
CLC 10 101 110 0000 0000
STC 10 101 110 0001 0000
CMP 10 110 011 B A

CMPC 10 110 111 B A
MOV 11 010 000 B A
MVN 11 010 001 B A
ADD 11 010 010 B A
SUB 11 010 011 B A

MOVC 11 010 100 B A
NEGC 11 010 101 B A
ADC 11 010 110 A A
SBC 11 010 111 A A

MOV8 11 011 000 B A
MVN8 11 011 001 B A
ADD8 11 011 010 B A
SUB8 11 011 011 B A
MOV4 11 011 000 B A
MVN4 11 011 001 B A
ADD4 11 011 010 B A
SUB4 11 011 011 B A

Figure 5 –Arithmetic Instructions

ADI adds an 8-bit signed constant to register A (A=A+C). SBI generates the same instruction
but negates the constant to subtract from register A (A=A-C). INC and DEC provide an
alternate way of specifying ADI RA, 1 and SBI RA, 1.

ADI R2,1 ; 2 ways to increment R2 by 1
INC R2

CPI subtracts and 8-bit signed constant from register A and sets the zero and carry flags. No
register is modified. CPZ provides a shorthand way of specifying CPI RA, 0.

CPI R1,0 ; 2 ways to compare R1 to zero
CPZ R1

CPU16 Instruction Set Page 6 of 14

07/19/09

STC and CLC set and clear the carry flag, respectively.

STC ; set carry
CLC ; clear carry

CMP subtracts register B from register A and sets the zero and carry flags. No register is
modified. CMPC is the same, but propagates the carry bit for larger comparisons.

CMP R2,R1 ; compare R2 to R1

MOV copies register B to register A. MVN copies the two’s complement of register B to register
A. MOVC and MVNC perform the same operations but propagate the carry bit. NEG and
NEGC provide an alternate way to specify MVN RN,RN and MVNC RN,RN.

MOV R2,R1 ; copy R1 to R2 and set flags
NEG R2 ; negate R2
MVN R2,R1 ; copy negative of R1 to R2

ADD adds register B to register A and leaves the result in register A (A=A+B). SUB subtracts
register B from register A and leaves the result in register A (A=A-B). ADC and SBC are the
same, but propagate the carry bit for larger arithmetic operations.

ADD R1,R3 ; 32-bit add (R2,R1 + R4,R3)
ADC R2,R4

MOV8 copies the contents of register B into the lower byte of register A. MVN8 negates the
byte being copied. NEG8 provides an alternate way to specify MVN8 RN,RN.

MOV8 R2,R1 ; copy LSB of R1 to R2 without affecting flags
MVN8 R2,R1 ; same, but resultant byte is negated

ADD8 and SUB8 add or subtract the lower byte in B from the lower byte in A without affecting
the upper byte (A7-0 = A7-0 ± B7-0 and A15-8 = A15-8).

ADD8 R2,R1
SUB8 R2,R1

MOV4, MVN4, NEG4, ADD4 and SUB4 perform the same operations on the lower 4 bits with
affecting the upper 12 bits.

CPU16 Instruction Set Page 7 of 14

07/19/09

5. Logical Operations

The logic unit operates on two 16-bit inputs (A and B) or on one bit from input A. The encoding
is shown in figure 6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NOT 11 100 000 B A
AND 11 100 001 B A
OR 11 100 010 B A

XOR 11 100 011 B A
MASK 11 100 100 C A
RST 11 100 101 C A
SET 11 100 110 C A
INV 11 100 111 C A

Figure 6 – Logical Instructions

Four instructions perform logical operations between register A and register B and four
instructions perform logical operations on bits in register A.

NOT copies the one’s complement of register B to register A. OR sets bits in register A when
either of the corresponding bits in register A or register B are 1. XOR sets bits if only one of the
two corresponding bits is 1. AND sets bits in register A if the corresponding bits in register A
and register B are both 1.

NOT R1,R1 ; R1 <- ~R1
OR R2,R1 ; R2 <- R2 | R1
XOR R3,R1 ; R3 <- R3 ^ R1
AND R4,R1 ; R4 <- R4 & R1

MASK selects the lower 0-15 bits of register A by zeroing the upper bits.

MASK R6,8 ; zero upper byte of R0

The bit manipulation instructions modify register A. RST and SET change the value of the bit
selected by C to 0 and 1, respectively. INV complements the value of the selected bit.

RST R7,1 ; clear bit 0
SET R7,15 ; set bit 15
INV R7,7 ; invert bit 7

CPU16 Instruction Set Page 8 of 14

07/19/09

6. Shift, Rotate and Sign Extension Operations

Shift and rotate operations are implemented by changing the order of bits in registers. In
addition, individual bits can be copied into the carry bit. Jumps can then be made conditional
on the value of that bit. The sign bit on 8-bit bytes may also be extended to 16-bit words.

Figure 7 shows how these instructions are encoded. Note that additional operations are
available by using different values for bits 7-4 in the instruction. The most useful instructions
are documented here.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TST 10 101 100 C A

MLLS 11 101 000 B A
SXL 11 101 000 A A

MHLS 11 101 001 B A
SXH 11 101 001 A A
INS4 11 101 010 B A
ROR4 11 101 010 A A
INS8 11 101 011 B A

SWAP 11 101 011 A A
IN16 11 101 100 B A
ROL4 11 101 100 A A
REV 11 101 101 B A
ROR 11 101 110 0000 A
ROL 11 101 111 0101 A
RRC 11 101 110 1000 A
RLC 11 101 111 1001 A
LSR 11 101 110 1100 A
LSL 11 101 111 1101 A
ASR 11 101 110 0100 A
SHL 11 101 110 C A
SHR 11 101 111 C A

Figure 7 – Shift and Rotate Instructions

BTST copies bit C of register A to the carry flag.

BTST R5,4 ; copy bit 4 to carry flag

CPU16 Instruction Set Page 9 of 14

07/19/09

MLLS copies the least significant byte of register B to the least significant byte of register A
and then extends the sign in A to fill 16 bits. MHLS copies the most significant byte of register
B to the least significant byte of register A and then extends the sign in A to fill 16 bits. SXL
and SXH provide alternate ways of specifying MLLS RA, RA and MHLS RA, RA.

MLLS R3,R1 ; split word in R3 into LSB in R1 and MSB in R2
MHLS R3,R2
SXL R3 ; remove upper byte in R0 and sign extend lower byte

INS4 copies the lower 4 bits of register B to the upper 4 bits of register A after shifting the
upper 12 bits of register A to the right. INS8 copies the lower 8 bits of register B to the upper 8
bits of register A after shifting the upper 8 bits of register A to the right. INS4 copies the lower
12 bits of register B to the upper 12 bits of register A after shifting the upper 4 bits of register A
to the right. ROR4, SWAP and ROL4 provide alternate ways of specifying INS4 RA, RA, INS8
RA, RA and IN12 RA, RA.

INS4 R1,R2 ; copy LS 4 bits of R2 to bits 15-12 of R1 and shift bits 15-4 to 11-0
ROR4 R1 ; rotate R0 right by 4 bits

REV reverses the order of the bits while copying from register B to register A. Bits 15 and 0 are
swapped, bits 14 and 1 are swapped, etc.

LDL R1,$57
REV R1,R1 ; 01010111 -> 11101010

ROL and ROR rotate the contents of register A left or right by one bit with bit 15 replacing bit 0
or bit 0 replacing bit 15, respectively. RLC and RRC rotate the contents of register A left or
right by one bit with the carry bit replacing bit 0 or bit 15, respectively. The carry bit contains
the previous value of bit 15 after ROL or RLC and bit 0 after ROR or RRC.

LOAD R1,$F0 ; R1=11110000
ROR R1 ; R1=01111000, C=0
ROL R1 ; R1=11110000, C=0
RLC R1 ; R1=11100000, C=1
RRC R1 ; R1=11110000, C=0

LSL shifts the contents of register A left by one bit and clears bit 0 while setting the carry bit to
the previous value of bit 15. LSR shifts the contents of register A right by one bit and clears bit
15 while setting the carry bit to the previous value of bit 0.

LOAD R2,$FF ; R2=11111111
LSL R2 ; R2=11111110, C=1
LSR R2 ; R2=01111111, C=0

CPU16 Instruction Set Page 10 of 14

07/19/09

ASR shifts the contents of register A right by one bit without affecting bit 15. The carry register
contains the previous value of bit 0.

LOAD R1,-2 ; R1=11111110
ASR R1 ; R1=11111111 (-1), C=0

SHL and SHR provide a means to generate additional types of 1-bit shifts. The value of the bit
shifted into the LSB during a left shift (SHL) or into the MSB during a right shift (SHR) are
determined by a constant as shown below:

C Carry Bit LSB or MSB
00x0 Bit 0 Bit 0
00x1 Bit 15 Bit 0
01x0 Bit 0 Bit 15
01x1 Bit 15 Bit 15
10x0 Bit 0 Link bit
10x1 Bit 15 Link bit
1100 Bit 0 0
1101 Bit 15 0
1110 Bit 0 1
1111 Bit 15 1

Figure 8 – SHL and SHR Modifier Field Encoding

CPU16 Instruction Set Page 11 of 14

07/19/09

7. Optional Multiply-Accumulate Instructions

There are 10 multiply-accumulate instructions, as listed in figure 9. Type 2 instructions are
used to start multiplication with options selected by the modifier field. The instructions
complete in 1 cycle but results require 2 instruction cycles to become available. Type 3
instructions are used to copy the results into general-purpose registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UMUL 10 100 000 B A
UMLN 10 100 001 B A
UMAC 10 100 010 B A
UMSB 10 100 011 B A
MUL 10 100 100 B A

MULN 10 100 101 B A
MAC 10 100 110 B A

MSUB 10 100 111 B A
LPL 11 110 000 0000 A
LPH 11 110 001 0000 A

Figure 9 – Multiply Instructions

MUL performs a 16-bit by 16-bit signed multiply and leaves the result in a 32-bit accumulator.
UMUL performs an unsigned multiply. MULN and UMLN perform signed and unsigned
multiplies and negate the result.

MAC and UMAC perform signed and unsigned multiplies and add the result to the existing
accumulator contents. MSUB and UMSB perform signed and unsigned multiplication and
subtract the result from the accumulator. Operands may be introduced at a rate of one pair per
instruction cycle and the results will be available on the next instruction cycle after the final
operands are loaded.

LPH provides the upper 16-bits of the accumulator and LPL provides the lower 16 bits of the
accumulator.

The MAC unit is useful for complex multiplies. CI = AIBI - AJBJ can be implemented with a MUL
instruction followed by MSUB, LPH and LPL instructions. CJ = AIBJ + AJBI can be implemented
with a MUL instruction followed by MAC, LPH and LPL instructions. The following code
fragment performs a complex multiply on R1/R2 and R3/R4 and returns the result in R5-R8.

MUL R1,R3 ; AIBI
MSUB R2,R4 ; AIBI - AJBJ
LPL R5
LPH R6
MUL R1,R4 ; AIBJ
MAC R2,R3 ; AIBJ + AJBI
LPL R7
LPH R8

CPU16 Instruction Set Page 12 of 14

07/19/09

8. Optional Division Instructions

There are 4 division-related instructions that are formatted as shown in figure 10. The division
operations consume many clock cycles, but may occur in parallel with other operations. The
programmer must insure that a new division operation is not issued until the previous one has
been completed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FDIV 10 101 000 0000 0000
IDIV 10 101 001 B A
LQ 11 110 010 0000 A
LR 11 110 011 0000 A

Figure 10 – Division Instructions

IDIV performs a 16-bit by 16-bit unsigned integer division leaving a 16-bit quotient and 16-bit
remainder. A is divided by B and the result is left in the quotient and remainder registers after
18 clock cycles.

FDIV continues the calculation in order to generate the fractional portion of the quotient in Q
after 17 more clock cycles.

The LQ and LR instructions read the quotient and remainder registers. The upper bit of R may
be monitored to determine when the calculation is complete. It is 1 during computation.

LOAD R2,255
LOAD R1,4
IDIV R2,R1 ; 255 ÷ 4
REP 17
NOP
LQ R1 ; 63
LR R2 ; 3
FDIV ; 3 ÷ 4
REP 16
NOP
LQ R3 ; R3 = 1100000000000000 = ¾

CPU16 Instruction Set Page 13 of 14

07/19/09

9. Stack Operations

The register R0 may be specified by SP and is commonly used as a stack pointer for data
storage. The assembler will generate 2-instruction sequences for PUSH and POP as follows:

DEC SP ; PUSH RN
WR RN,SP

RD RN,SP ; POP RN
INC SP

The XTOS instruction exchanges a register with the top of the stack by generating:

XCHG Rn,SP ; XTOS RN

PUSH, POP and XTOS simplify programming. By default, the use of R0 is suppressed to
minimize register allocation errors.

10. Pseudo-Instructions

The PRAM instruction is used to generate different amounts of program memory.

Modifier Result
0 Generate file
1 One 1k x 16 RAM
2 Two 2k x 8 RAMs
4 Four 4k x 4 RAMs

Figure 11 – PRAM Instruction

REG assigns a label to the specified register.

Label: REG R7

EQU assigns a label to the specified numeric constant.

one: EQU 1

DW assigns a label to the current address and increments the data address by the specified
number of words.

long: DW 2

The ORG pseudo-instruction is used to set the program address to the specified value. The
program address defaults to zero.

ORG 0

CPU16 Instruction Set Page 14 of 14

07/19/09

11. Conclusion

Figure 12 shows how instructions are allocated within the space provided by the type,
operation and modifier fields. About 10% of the instruction space is unused so there is room
for future enhancement.

Figure 12 – Operation Code Matrix

JBS

